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Abstract - Small oval or circular masses identified in the 
lungs are known as lung nodules. When these nodules are 
smaller than 3 cm, they are often considered less 
concerning; however, over time, they may increase in size, 
potentially leading to more serious consequences. Early 
detection of these nodules and timely preventive measures 
are crucial to impede their progression to malignancy. 
Conventional diagnostic methods like computerized 
tomography (CT) and radiographic imaging techniques are 
utilized for this purpose. Nevertheless, these approaches can 
either subject patients to excessive radiation or prove 
inadequate in detecting small nodules. As a result, various 
deep learning-based image processing techniques are being 
explored for lung nodule detection. In this study, a novel 
deep-learning model is proposed for the automated real-
time detection of lung nodules. The proposed model exhibits 
a remarkable accuracy of 92.3% in nodule detection, along 
with a sensitivity of 88.5% and a mean average precision 
(mAP) of 53.5%. The model is built using the YOLOv8 
architecture, with the YOLOv8m configuration yielding the 
best results. Additionally, graphical comparisons with 
existing studies in the literature demonstrate the 
effectiveness of the training model. 
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1. INTRODUCTION  

Pulmonary nodules are small, round, or oval-shaped 
growths in the lungs that can be benign or malignant. They 
are often detected incidentally on chest imaging or 
through dedicated screening programs for lung cancer. 
The presence of pulmonary nodules may cause symptoms 
such as cough, chest pain, shortness of breath, or coughing 
up blood, especially if the nodules are large, multiple, or 
cancerous. Some nodules may also be associated with 
infections, inflammation, or autoimmune diseases that can 
affect other organs and systems. Therefore, determining 
the nature and cause of pulmonary nodules is essential for 
providing appropriate treatment and preventing 
complications. The epidemiology of pulmonary nodules 
depends on various factors, such as the prevalence of 
smoking, environmental exposures, infectious diseases, 
and genetic susceptibility. According to the latest 
guidelines and evidence, the management of pulmonary 
nodules should be based on the risk of malignancy, which 

can be estimated by using validated models that 
incorporate radiographic and clinical features. The size, 
shape, density, location, and growth rate of the nodules 
are important radiographic characteristics that influence 
risk assessment and follow-up recommendations. The use 
of low-dose computed tomography (LDCT) for lung cancer 
screening has increased the detection of pulmonary 
nodules, especially those that are sub-solid or ground-
glass in appearance, which have a higher risk of cancer 
than solid nodules. New criteria for the classification and 
management of atypical pulmonary cysts, juxta pleural 
nodules, and inflammatory or infectious findings have 
been introduced in Lung-RADS® v2022, a standardized 
reporting system for LDCT screening. The goal of 
pulmonary nodule evaluation is to identify and treat lung 
cancer at an early stage while minimizing unnecessary 
interventions and harm for benign nodules [1-3]. 

Lung cancer is one of the most common and deadliest 
types of cancer in the world [4]. Early diagnosis and 
treatment of lung cancer is critical to improve survival. For 
this purpose, developed computational image processing 
studies are carried out. However, lung nodule detection 
and diagnosis poses challenges for image processing and 
analysis. Lung nodules can vary greatly in size, shape, 
density, location, and number. In addition, factors such as 
noise, artifact, and lack of contrast in images may 
complicate the detection and characterization of lung 
nodules. Lung nodule detection using the deep learning 
method is an important step for early detection of lung 
cancer. Deep learning techniques for lung nodule detection 
provide higher performance and accuracy than traditional 
computer-aided diagnostic systems. Zhang et al. [5] 
utilized 3D DenseNet and 3D FPN models for detecting 
lung nodules. They designed a dense feature pyramid 
network to extract multi-scale features from different 
layers of the DenseNet backbone. In their study, they 
achieved an impressive competition performance metric 
(CPM) value of 0.8934 on the LUNA16 dataset, showcasing 
compelling results. Furthermore, the detection 
performance was improved by approximately 2% 
compared to other methods Zhang et al. [6] proposed an 
integrated active contour model (IACM_MRFEBPD) for 
small ground glass opacity (GGO) pulmonary nodule 
segmentation. The method combines Markov random field 
energy and Bayesian probability difference, achieving an 
average IOU of 0.7444, 0.7503, and 0.7450 for LIDC-IDRI 
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test set, clinical test set, and all test sets, respectively. The 
approach enables accurate and robust segmentation, 
aiding in early lung cancer detection through medical 
imaging evaluation. Ye et al. [7] proposed an automated 
pulmonary nodule detection model using modified V-Nets 
and an advanced SVM classifier. The model achieved 
66.7% accuracy, 81.1% true positive rate, 78.1% positive 
predictive value, and 78.7% F-score. Experimental results 
on the LUNA16 dataset demonstrate its effectiveness in 
early lung cancer detection. Huang et al. [8] propose a fast 
and fully automated end-to-end system for precise 
pulmonary nodule analysis. Their approach achieves high 
accuracy, with 91.4% and 94.6% detection rates and an 
average of 1 and 4 false positives (FPs) per scan. The 
nodule segmentation exhibits an average dice coefficient 
of 0.793, demonstrating its effectiveness in automated 
lung nodule analysis. Luo et al. [9] present an anchor-free 
3D sphere-based lung nodule detection network. The 
approach automatically predicts nodule position, radius, 
and offset without predefined anchor parameters. The 
model effectively performs existing methods on the 
LUNA16 dataset, achieving high true positive rates (TPR) 
of 92.2 (1 FPs/image), 93.9 (2 FPs/image), and 96.4 (8 
FPs/image) for lung nodule detection. Vipparla et al. [10] 
propose three diverse 3D Attention-based CNN 
architectures for lung nodule detection. The models use 
attention mechanisms and contextual dependencies to 
achieve significant improvements in classification 
performance. Fusion of their predictions leads to more 
effective results with a CPM score of 0.931 on the LUNA16 
dataset. Han et al. [11] propose a CAD system, Pulmonary 
Nodules Detection Assistant Platform, for early detection 
and classification of pulmonary nodules in physical 
examination LDCT images. Their 3D CNN-based model 
achieves an accuracy of 0.879 with an average of 1 false 
positive per CT in LNPE1000 dataset. The system shows 
efficiency in detecting smaller and larger nodules, offering 
potential benefits for early lung cancer detection in 
physical examination applications. Alakwaa et al. [12] 
propose a computer-aided diagnosis (CAD) system for 
lung cancer classification using CT scans with unmarked 
nodules. The system achieves an accuracy of 86.6% and 
requires less labeled data, offering a more efficient and 
generalized approach to lung cancer diagnosis.  

Lung nodule detection was addressed in this study using a 
two-stage deep learning model. In the first stage, image 
processing filters were employed to enhance learning 
performance and highlight nodule regions. Subsequently, a 
Convolutional Neural Network (CNN) was trained, 
achieving an impressive 94% accuracy. The resulting 
weight model was then utilized to detect cancerous 
regions. For the next step, the nodule regions identified by 
the CNN and those marked by radiology experts were 
prepared as input windows and trained with YOLOv8 
models. The performance metrics, including accuracy 
(92.3%), precision (87.3%), and mean Average Precision 

(mAP - 53.5%), were obtained based on the training data. 
The study results were presented in tables and compared 
with findings from the existing literature. 

The other sections of the paper are organized as follows: 
Section 2 introduces the dataset and presents the 
explanations of the methods and techniques used. Section 
3 explains the general workflow of the proposed 
convolutional model. Section 4 presents experimental 
results and comparative analyses demonstrating the 
effectiveness of the proposed approach. Finally, Section 5 
includes evaluations related to the obtained results. 

2. MATERIAL METOD 

2.1. Dataset 

The LUNA16 dataset is derived from the Lung Image 
Database Consortium (LIDC-IDRI) database, which has 
been publicly released. The LIDC-IDRI database contains 
CT images and expert radiologists' annotations. The 
LUNA16 dataset consists of 888 chest CT scans in DICOM 
format. The dataset provides DICOM files along withs .mhd 
and..zraw extensions. The annotations for nodule regions 
were determined by expert radiologists. The dataset 
includes annotations for both malignant (cancerous) and 
benign (non-cancerous) nodules. Nodules vary in terms of 
their sizes, shapes, and locations within the lungs. In this 
study, the LUNA16 dataset was processed using the 
Python-3.11.1 torch-2.0.1+cpu CPU (12th Gen Intel Core 
(TM) i7-12700H) hardware in the PyCharm IDE, and a 
deep learning model was proposed for nodule detection 
[13]. 

2.2. Convolutional Neural Network 

The increasing advancement and accessibility of hardware 
technologies, coupled with the abundance of data in 
various fields, have positively influenced the proliferation 
and success of deep learning studies [15]. Convolutional 
Neural Network (CNN) is a deep learning method that 
processes its inputs by analyzing specific features through 
different layers for classification tasks. Its ability to 
determine features on its own provides ease of use. As a 
result, it is effectively employed in various medical 
applications such as cancer diagnosis and nodule 
detection [16-18]. CNN, as shown in Figure 1, consists of a 
convolutional layer, pooling layer, activation layer, and 
fully connected layer. The convolutional layer works based 
on the logic of applying filters of a predetermined size to 
perform operations on the image and extract overlapping 
regions. It demonstrates efficiency in detecting low-level 
features such as edge detection, gradient orientation, and 
color. 
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Fig -1: CNN architecture [19] 

After the convolutional layer, the pooling layer contributes 
to reducing the dimensionality of the data, thereby 
reducing the computational power required to process it. 
It also aids in extracting spatially invariant features and 
helps prevent overfitting. An activation function is applied 
to the computation results to finalize the output and 
create a mathematical value. Subsequently, the obtained 
outputs are passed to the fully connected layer to be 
transformed into a single vector and then forwarded to 
classification functions [19].  

In this study, images obtained from .mhd extension DICOM 
files were processed with the CNN architecture shown in 
Figure 4 after the preprocessing steps. In addition to the 
general layers, the dropout layer is also used in the 
architecture. In order to increase the learning 
performance, the learning rate was reduced after 10 
epochs and satisfactory results were obtained. The regions 
marked by the weight model formed as a result of the 
training were recorded in .txt format. In these txt files, png 
coordinates are retained and the corresponding 
coordinates are determined when the coordinates shared 
in the LUNA16 dataset are converted to 2D form. For each 
png, the positions determined by both the CNN 
architecture and the expert radiologists in the data set 
were taken as the YOLO input. The results obtained are 
presented in Chapter 4. 

2.3. You Only Look Once (YOLO) 

YOLO (You Only Look Once) is an object detection 
algorithm that has become increasingly popular in recent 
years, reducing the need for high-performance hardware. 
YOLO is fundamentally a deep learning algorithm based on 
CNN and is commonly used in applications such as 
segmentation, classification, object detection, and real-
time object tracking [20, 21]. Its initial version was 
published in 2015, and since then, various versions have 
been developed to maintain a balance between speed and 
high accuracy. 

Real-time nodule detection in medical data is crucial for 
achieving fast and high-performance results with deep 

learning [13]. Therefore, this study utilizes YOLOv8 for 
this purpose Accordingly, this study proposes a two-stage 
learning system for medical data. In the first stage, an 
abundant and sufficient amount of data is preprocessed 
and trained with the CNN architecture. After the training 
and nodule identification, in the second stage, YOLOv8 is 
fine-tuned for real-time applications to achieve fast and 
convenient integration. 

YOLOv8 is created in 5 different scale types. It can learn 
features such as object detection, segmentation, pose 
estimation, tracking, as well as multiple views in different 
dimensions. These scales; YOLOv8n (nano), YOLOv8s 
(small), YOLOv8m (medium), YOLOv8l (large), and 
YOLOv8x (extra-large) [22]. This study also presents the 
results of these five different scales for the same epoch 
comparatively. 

3. PROPOSED MODEL 

A hybrid model is being proposed to improve the 
accuracy, efficiency, and real-time capability of lung 
nodule detection and enhance the differentiation between 
benign and malignant nodules. The overall workflow of 
the study is illustrated in Figure 2. 

Initially, the data from the LUNA16 dataset was 
preprocessed to determine the lung parenchyma by 
adjusting the values to the Hounsfield unit scale [-1000, 
400][13]. Preprocessing steps were then applied to each 
DICOM slice, followed by combining each slice with other 
images from the corresponding .mhd extension file. This 
process yielded a total of 888 .png files. These files were 
subsequently divided into training, testing, and validation 
sets using the CNN model, and then trained with the CNN 
model, resulting in the creation of a weight file (.h5). 

Using the obtained weight file, nodule detection was 
performed on all 888 images, and the predicted regions 
containing nodules were annotated. The coordinates of 
these regions were recorded and compared with the 
average coordinates provided by expert radiologists in the 
LUNA16 dataset using an .mhd file. In cases where there 
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were significant differences in the coordinates, two sets of 
coordinates were generated. Coordinates that were in 

close proximity to each other were merged to form a 
single rectangle, and the data was saved. 

 

Fig -2: Workflow diagram of the proposed model 

Subsequently, the acquired data and image inputs were 
trained using YOLOv8, which offers fast training and real-
time processing capabilities. The learning outputs were 
presented along with performance metrics. Finally, the 
trained weight model was validated for each DICOM slice. 

3.1.  İmage Preprocess 

After extracting the files with the .mhd extension from the 
segmentation folder containing 888 CT images in the 
LUNA16 dataset, the first step involved extracting the lung 
parenchyma based on the Hounsfield Unit scale. 
Subsequently, a series of image-processing steps were 

applied to enhance the lung parenchyma and facilitate 
subsequent analysis. These steps included min-max 
normalization to ensure consistent data scaling and 
prevent errors due to unusual data values. Furthermore, 
the following procedures were performed: Unsharp 
Masking, Median Filtering, Laplacian Filtering, 
Binarization, Mask Negation, Morphological Closure, Mask 
Negation (Repeated), Hollow Filling, and Mask 
Subtraction. The accompanying Figure 3 illustrates the 
progressive changes in the parenchymal image as each 
procedure was applied.  

 

 

Fig -3: Image preprocessing pipelines 
 

Hounsfield Units are characterized as a quantitative 
measurement of radio intensity. It is used to make regional 
comments on CT and MR images and to analyze the 
existing tissue type. For this study, HU scaling was 
performed in the range of [-1000, 400]. These values were 
chosen because they highlight the lung parenchyma tissue 
[13]. After determining the pakanchyme texture, min-max 
normalization was applied to scale the intensity values of 
each pixel in the image to the [0, 1] range. The 
normalization formula is as follows: 

X' = (X - min_density) / (max_density - min_density)        (1) 

Here X represents the original pixel intensity value, X' 
represents the normalized pixel intensity value, 
min_density, and max_density represent the minimum and 
maximum intensity values in the original range. In the 
second stage, unsharp masking was applied. It is used to 
highlight edges and details in the image by removing a 
blurred version of the original image from the original 
image. A median filter, which is a noise reduction 
technique that replaces the pixel value with the median 
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value, has been applied in order to eliminate the noise 
generated after this process. It is the Laplace filtering 
technique, which is an edge detection technique that 
emphasizes rapid density changes in the image in order to 
more precisely detect the nodules in the image. After this 
filtering step, a binarization process determined according 
to a certain threshold was applied in order to analyze the 
nodules more easily. And in the final stage, mask negation 
process was applied in order to emphasize the nodules 
more and reduce the noise from the background. 

After the creation of the data, the images were adjusted to 
512x512 for training purposes and passed through the 
CNN model given in Figure 4. A convolutional layer is used, 
which creates feature maps by scanning with various 

filters and is effective in detecting edges, color changes 
and other important patterns in the image. 32 3x3 filters 
and relu layers as activation functions, 64 3x3 filters and 
relu layers as activation functions are used, respectively. 
In order to reduce the computational load and reduce the 
risk of overfitting, maximum pooling is applied in size (2, 
2). In order to provide input to the dense layer, it flattens 
the output of Conv2D and MaxPooling2D layers into a 
single vector. In the Dense layer, important features are 
learned for classification by combining their features. In 
the last stage, the SoftMax function is used to determine 
the class prediction. The weight model with .h5 extension 
obtained at the end of the process was recorded. 

 

 

Fig -4: Proposed CNN architecture 
 

After 150 epochs of training, we achieved a satisfactory 
training success rate of 94%. Detailed training outcomes 
are extensively documented in Chapter 4. The obtained 
model was employed for detecting nodules, and each 
nodule's boundary was enclosed within a rectangle. The 
resulting data from this process were stored in separate 
.txt files, which serve as input data for YOLOv8. 
Additionally, the data information annotated by expert 
radiologists in .mhd files was also incorporated into these 
.txt files. Subsequently, we conducted training with 5000 
epochs using the ultrasonic library on the yolov8.pt model. 
The results obtained were highly satisfactory and 
demonstrated comparability with findings reported in the 
literature. Section IV provides a comprehensive account of 
the experimental results. 

4.  EXPERİMENTAL RESULTS 

In this study, the evaluation metrics employed for lung 
nodule detection include accuracy, sensitivity, recall, 
precision, mAP (mean Average Precision), and mAP50-95 
(mean Average Precision between 50 and 95). The 
obtained results are based on the outputs of TP (True 
Positive), TN (True Negative), FP (False Positive), and FN 
(False Negative) generated after the training process. 

Accuracy represents the percentage of correctly classified 
nodules relative to the total number of detected nodules. It 
is calculated using the formula: 

Accuracy = (TP + TN) / (TP + TN + FP + FN)                       (2) 

Sensitivity measures the percentage of true positive cases 
relative to the sum of true positive and false negative 
cases. The formula is as follows: 

Sensivity = TP / (TP + FN)                                                          (3) 

Recall denotes the sensitivity percentage relative to the 
sum of true positive and false negative cases. The formula 
is given by: 

Recall = TP / (TP + FN)                                                               (4) 

Precision indicates the percentage of true positive cases 
relative to the sum of true positive and false positive cases. 
The formula is as follows: 

Precision = TP / (TP + FP)                                                         (5) 
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mAP(mean Average Precision) represents the average 
value of sensitivity at different recall levels. The formula is 
given by: 

mAP = (1 / N) * Σ(Recall)                                                        (6) 

mAP50-95(mean Average Precision between 50 and 95 
reflects the average sensitivity between recall levels of 
50% to 95%. The formula is given by: 

mAP50-95  =  (1 / (95 - 50 + 1)) * Σ(Recall)  (for i from 50 to 
95)                                                                                                (7) 

In this study, the primary objective is to enable real-time 
and rapid detection of benign or malignant nodules within 
the region captured by CT images. Lung nodule detection 
is achieved by training a Convolutional Neural Network 
(CNN) using information from nodule regions based on 
radiologist annotations. The dataset consists of 888 CT 
images in DICOM format, each containing corresponding 
.mhd and .zraw files. Through image processing and 
preprocessing steps, 551,065 PNG images were generated. 
Notably, the 93rd and 94th PNG layers, which generally 
display the lung parenchyma for each CT, were included in 
the training process. The training achieved 94% accuracy 
over 150 epochs. 

Subsequently, an .h5 model was created after training. 
Using this model, nodules were detected in the images and 
saved to a .txt file. Additionally, the coordinates marked by 
radiology experts in the candidates.csv file of the LUNA16 
dataset were converted into 2D .png planes. The resulting 
coordinate information was also saved in the relevant .txt 
file. Both the generated .txt files and images were utilized 
as input for YOLOv8 and evaluated for five different scales 
over 30 epochs. The obtained results have been 
summarized in Table 1. According to these results, when 
evaluated at different scales, the YOLOv8x model 
demonstrated the highest precision value. Furthermore, 
the mAP (mean average precision) and mAP50-95 (mean 
average precision at IoU thresholds of 50 to 95) values 
showed the best performance for the YOLOv8m model. 
These findings indicate that the YOLOv8 model achieved 
high success in the object detection task, and particularly, 
the YOLOv8x and YOLOv8m models outperformed others 
when compared across different scales. 

Simultaneously, these findings provide evidence that the 
proposed methodology is suited and confirm its 
practicality, particularly in the context of real-time 
applications. The results underscore the methodology's 
potential to excel when supplied with more 
comprehensive training data and deployed on robust 
hardware. 

 

Table 1. Performance Evaluation of YOLOv8 Scales 
Trained over 30 Epochs 

YOLO 
scales 

Precision mAP50 mAP50-
95 

Yolov8n 0.291 0.356 0.296 

Yolov8s 0.775 0.505 0.394 

Yolov8m 0.873 0.535 0.4 

Yolov8l 0.626 0.523 0.303 

Yolov8x 0.894 0.482 0.36 

 

Moreover, the study results exhibit comparability with 
similar previous works, as presented in Table 2, 
showcasing the performance outcomes in a comparative 
manner. The findings highlight the efficacy and potential 
of the proposed approach for lung nodule detection, 
contributing to the advancement of medical imaging and 
early lung nodule diagnosis. 

Table 2. Performance Evaluation of Studies Utilizing the 
LUNA16 Dataset 

Study Acc. Sens. Method Used 

Ye et al. 
[7] 

66.7
% 

81.1% Modified V-Nets and 
Advanced SVM Classifier 

Huang et 
al. [8] 

91.4
% 

- Fast and Fully Automated 
End-to-End System 

Han et al. 
[11] 

87.9
% 

- 3D CNN-Based Model for 
Physical Examination LDCT 

Images 

Alakwaa 
et al. [12] 

86.6
% 

- Computer-Aided Diagnosis 
(CAD) System for Lung 

Cancer Classification Using CT 
Scans with Unmarked 

Nodules 

Propose
d 

92.3
% 

88.5
% 

The model trained using 2D 
Convolutional Neural 

Networks (2DCNN) and 
YOLOv8 

 
5. CONCLUSIONS 

 A deep learning model is proposed in this research to 
facilitate disease diagnosis with reduced radiation 
exposure. The detection of nodules and cancerous tissues 
is targeted using real-time imaging devices, such as C-arm 
fluoroscopy, which involve lower radiation doses. A novel 
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deep learning model, specifically tailored for the detection 
of lung nodules, enables real-time automated detection of 
predefined nodules. Lung nodule detection is achieved 
with an accuracy of 92.3%, a sensitivity of 88.5%, and a 
mean average precision (mAP) of 53.5%. When compared 
to the YOLOv8 architecture, superior results are obtained 
with the YOLOv8m architecture. Furthermore, graphical 
comparisons with related studies in the literature 
effectively demonstrate the effectiveness of the training 
model. This study represents a significant stride towards 
early lung nodule detection and the implementation of 
preventive measures, offering valuable insights for future 
research. Deeper networks and larger datasets can be 
explored in future studies to further enhance the 
robustness and accuracy of the results. 
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