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Abstract - Large Language Models from OpenAI’s 
ChatGPT or Google’s BARD have the capability to generate 
human-like responses in natural language. This capability 
can be used to design solutions to solve many enterprise 
business use cases. In this prototype solution we are trying 
to design an Enterprise content search solution using 
Generative AI. This QnA (Question and Answering) 
framework would be designed based on OpenAI’s APIs on 
top of the private business knowledge for internal 
stakeholders of an organization.  This solution would try to 
leverage the summarization and embeddings generation 
capabilities of OpenAI’s API as well as Vector Database as 
part of the private knowledge repository in the solution. In 
the prototype solution we will measure the cost of the Q&A 
system based on OpenAI's offerings with different types of 
LLM models for a fixed knowledge dataset. 
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1. INTRODUCTION 

Content is an integral part for any Enterprise. The 
contents or business knowledge are useful for internal 
stakeholders who consume this knowledge about a 
process or workflow and complete a specific workstream. 
Consider the following problem statements and use cases: 

a) Airline industry- It uses various internal and 
external applications for managing 
bookings/reservations or passengers data or fleet 
schedules. An internal employee like a booking 
agent has to have good business knowledge to 
serve the external customers. The agent spends a 
huge time figuring out the correct workflow by 
referring to the proprietary enterprise knowledge 
articles.  

b) Financial organizations- They have built a huge 
knowledge and research repository based on the 
market research done by their analysts over time 
but finding the correct step or referring to the 
correct research is a huge pain when the 
information is in a case study format. 

The traditional Enterprise search system depends on the 
regular full text search or partial text search and lists 
down the knowledge sources or articles based on the exact 
word matching. This sometimes pulls the incorrect 
sources of information or too much information.  

Our proposed Generative AI based solution would help the 
enterprise stakeholders to correctly point out the exact 
response or steps/process flows out of the tons of 
knowledge articles. The solution outlined below would 
also use the Large Language Model’s summarization 
capability to provide exact responses so that users do not 
need to browse through the knowledge sources to identify 
the information they are looking for. The process is called 
Retrieval Augmented Generation (RAG) where the LLM 
model is used to generate human readable response in the 
natural language while setting the context or boundary 
within the Enterprise business knowledge so that the LLM 
model doesn’t hallucinate or generate incorrect response. 

That would definitely help the enterprise to save tons of 
business hours with a high customer satisfaction rate. In 
the following sections we will cover some important 
concepts of AI which are the basic building blocks of our 
proposed solution. 

1.1 Introduction to Embeddings 

Embedding is one of the major building blocks in our 
solution. Embeddings refer to the mathematical 
representation of a piece of text or words or graphic 
contents such as images or media contents (video/audio)  
in such a way that it becomes easier to find the closeness 
or relatedness of  those data. E.g. consider the following 
three sentences -  

a) Peter loves eating cheese pizza more than anything 
b) ChatGpt is disrupting everything 
c) Dominos is offering some really cool deals 

For a human it is very easy to figure out that the two 
sentences (a) and (b) have some closeness since both are 
connected with pizza, however the 2nd sentence (b) has 
no relatedness with the rest of the sentences. If these 
above three sentences are plotted against a three 
dimensional graph it would probably look like below : 
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Fig -1: Plotting the sentences into a 3 D space 
 

In the machine world embeddings work similarly. It 
generates a complex mathematical model to represent the 
above lines by generating an “N” number of dimensions. 
This mathematical representation is called a  “Vector”. In 
the Generative AI landscape Embeddings (Vectors) play an 
important role. Large Language Models like ChatGpt have 
the capabilities to generate Embeddings of the input 
content and at the same time can preserve the meanings of 
the supplied data. The LLM model called "text-
embedding-ada-002" can generate embeddings having 
1536 dimensions. 

1.2 Introduction to Vector Database 
 

As we can see the complex multi dimensional 
representation of the data in the machine learning world 
can not be stored in the traditional relational database or 
noSql database. The traditional columnar or scalar 
databases lack the capabilities to store the vector data 
type and scale accordingly. Information retrieval in the 
vector database works differently than the traditional 
database, where it tries to output content which exactly 
matches with the input query whereas in the vector 
database it uses algorithm like Kth nearest neighbor (K-
NN) or Approximate Nearest Neighbor (ANN) to find 
data having shortest distance and return the similar 
results. 

Vector databases add more functionality to an LLM 
based application like semantic retrieval of data or adding 
a memory by remembering the context of the interaction. 
In our proposed solution, the vector database is playing an 
integral role. 

Fig -2: Embeddings storage mechanism in the Vector DB 

1.3 An Overview of Prompt Engineering 
 

In the AI world Prompt Engineering refers to the 
designing of a short piece of text or phrase based on 
certain principles that can be passed to the Large 
Language Model to effectively generate the contents as 
output. The prompt engineering is one of the important 
building blocks as if this is not properly constructed then 
LLM models like ChatGpt can hallucinate meaning it either 
generates an illogical meaningless content or out of 
context responses. So it is always a best practice to 
validate the input texts we pass to the LLM model’s API 
based on the defined principles of Prompt Engineering. 
Based on the intent or purpose of the input phrases the 
model can exhibit capabilities like summarizing a large 
pool of texts or content or inferring or clarifying the topics 
or transforming the input texts or expanding the input 
text. 
 

1.4 Overview of the OpenAI LLM models 
 

OpenAI has offerings from a diverse set of Large 
Language Models having varying degree of capabilities 
and limitation of input tokens. For example GPT 4 and GPT 
3.5 are capable of understanding the natural language as 
input and based on the intent or requirements can 
generate responses in natural language. The DALL-E 
model is pre-trained to generate or produce graphical 
images based on the input or prompt engineering in 
natural language. The Embeddings model “text-
embedding-ada-002” can produce embeddings of the 
supplied input texts which help to find the relatedness 
between two different phrases or sentences. Following 
table summarizes the various models and their basic 
functionalities. 

 
Table -1: OpenAI LLM capabilities 
 

OpenAI’s Large Language Models 

Moderation This model is fine tuned to detect unsanitized 
content 

Whisper It can generate text from audio. 

Embeddings It can generate embeddings (mathematical 

representation) of texts 

DALL-E It can generate images based on natural 

language input. 

GPT-3.5 LLM model that understands natural 
language and generates the same. 

GPT-4 LLM models that can understand natural 
language and can generate the same. An 
improved version over GPT-3.5  
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2. DESIGNING THE LLM SOLUTIONS 
 
In our proposed solution we tried to utilize the AI or LLM 
workflows as much as possible to design one of the robust 
and scalable Generative AI based solutions. In the 
traditional Question & Answer based product the system 
works by matching either exact data from the article or 
doing partial or full text search and listing the article 
results. Sometimes this works best but most of the time it 
misses the intent of the question being asked by users and 
lists only results based on just word matching.  Sometimes 
this frustrates the end users as they still need to go 
through the entire article to figure out what they are 
looking for and sometimes the results lack listing it 
correctly.  

Our Generative AI solution tries to use the power of Vector 
database based on the Embeddings data model and not 
only lists the top lists of content but it utilizes the OpenAI 
summarizing capability to assist the user with the point 
content or instructions that they are looking for. The 
entire solution consists of two workflows - Pre-Processing  
or ingestion of the data and Retrieval Framework  

2.1 Pre-Processing (Ingestion pipeline) 
 

In the pre-processing stage, we designed the Ingestion 
framework which is the backend component. This is 
responsible to ingest the Enterprise knowledge repository 
by scanning the sources of articles and then breaking them 
into chunks of tokens or smaller meaningful segments. 
This strategy is called the chunking strategy. Based on 
the article source and the way they are formatted, the 
engineering team needs to determine the chunking 
strategy so that the article source can be easily ingested to 
build an LLM knowledge repository. 

 
Based on the chunking strategy, the tokens are looped 
through by the framework and for each token block it is 
sent to the Embeddings API of the Embeddings LLM (text-
embedding-ada-002) to generate the corresponding 
Embeddings of the input tokens. While sending the token 
blocks to the LLM model the framework needs to consider 
the token limitation that is enforced by OpenAI. So this 
process using this framework shouldn’t be realtime and 
should be considered as the Day 1 activity or pre-
processing activity. 

Following information flow diagram shows that the input 
knowledge articles are extracted from the HTML source or 
document sources like PDF / Word docs / CSVs. This 
extracted content is split into multiple chunks based on 
the chunking strategy defined by the content team or the 
business team. E.g. We can consider the chunking strategy 
as sentences consisting of 10 or more words (fixed size 
chunking) or phrases based on logical groups (content 
aware chunking). If the input articles are enterprise 
articles then fixed size chunking performs best. However if 
input content are research based articles then content 

aware chunking would work best to identify the exact 
logical segments.  

Also we need to use the stop words elimination strategy 
to remove any unwanted stop words to make each chunk a 
meaningful & insightful text chunk. As you know that the 
stop words refer to the common words or text character 
or symbol that generally doesn’t carry much meanings of 
its own but in our natural language it either connects two 
phrases or multiple words to form paragraphs or 
sentences (example of stop words are - he, him, they, has, 
have, that, which, in, out, be, ; , .). We need to eliminate the 
stop words from the text chunks which the solution is 
generating so that we can stay within the limit of the 
tokens input to the LLM and make the solution cost 
effective. 

The text chunks are sent to the Embeddings API 
(/embeddings) of OpenAI to generate the embeddings 
vector. The Vector Embeddings are stored in the Vector 
database alongside the metadata information of the source 
article which can be referenced if needed. 

 
Fig -3: Pre-Processing workflow High Level Design 

 
Table -2: A sample DB table structure is as follows: 

Sample Data Model 

Id Auto generated Id (type: number) 

embeddings_content Embeddings data (field type: 

vector) 

article_name It stores the article name (type: 

text) 

article_link URL of the HTML article 

create_date Record creation date time 
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Fig -3: OpenAI Embeddings API call using Postman 
 

2.2 SERVE / Retrieval Framework 
 
Once we have the pre-processing work completed by 
ingesting the enterprise knowledge content, we will have 
the Vector database available for consumption by other 
components. 

The Serve framework is where the end users would be 
able to query against the AI based knowledge repository 
we built during the pre-processing stage. The high level 
design steps are given below -  

a) User asked a question, which is sent to OpenAI’s 
moderation API (/moderations) to validate if this 
is a valid and meaningful question and doesn’t 
have any sensitive or invalid wordings. 

b) If the question is invalid then the user is alerted 
immediately and no responses are generated. 

c) If the question passes the moderation strategy 
then this is a meaningful and valid in-context 
question. 

d) This valid question is then posted to OpenAI's 
embeddings API which converts it into a series of 
Vector Embeddings for further processing. 

e) This question phrase of Embeddings data is used 
to query the knowledge repository (Vector 
Database) that is curated during the pre-
processing stage. 

f) In the vector database the similarity search is 
performed to list the top similar results based on 
ranking using algorithms such as cosine 
similarity. 

g) This result is then sent to OpenAI’s completion 
API (/v1/completions) which summarizes into a 

natural language pattern for the user to 
understand easily. The metadata (article url or 
references) are also preserved alongside the 
summarization. 

h) The result from the OpenAI’s completion API is 
also validated with a general moderation action. 
This way we ensure the answers coming from the 
internet data trained foundation model do not 
have any mixed invalid data from outside. Though 
we put the guard rails when we invoked the 
completion API while passing the top results as a 
context. 

i) The valid response is then sent back to the user. 

 
 

Fig -5: Retrieval / Serve Framework High Level Design 
 

3. TECHNOLOGY STACK 
 
The recommended technology stack for both the 
frameworks are given below. Since this Generative AI 
landscape is evolving fast so we may expect more new 
tools and technologies will be available to solve various 
potentia;l use cases and some tools would be retired.  

a) Development Framework: Langchain is one of 
the most popular python frameworks for building 
LLM based apps. Both the ingestion and the Serve 
components are built with Langchain. 

b) Vector Database: As a OnPremise solution the 
recommendation is to use the pgvector extension 
for PostGres database. Postgres with pgvector 
extension is available as a docker container. 

c) UI framework: Streamlit or Chainlit are the 
popular python framework which can be used to 
glue the UI/UX side. However, ReactJs or 
AngularJs can also be used to build interactive UI 
components. 
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4. RESULTS 

We created a prototype project with the basic minimum 
python components to see the performance. The 
prototype minimum viable product can be enhanced with 
more advanced python modules to make it more feature 
rich. Based on the Langchain AI framework, the prototype 
solution also integrated with in-memory open source 
Chroma Vector database for storing the Embeddings. 

We measured the performance of the OpenAI Embeddings 
generation based on the supplied document having 200 
words. The performance metrics have been compared 
with what is available in the market from free open source 
libraries. 

We also captured the performance of the various LLM 
models available from OpenAI for a fixed size prompt. The 
results are given below. 

4.1 QnA code  

In our prototype solution we used python code to 
demonstrate the ingestion processes we solutioned above. 
We used the Langchain framework and Pinecone vector 
database to store the embeddings generated by the 
OpenAI’s default LLM model “text-embedding-ada-002”. 
The ingestion code is the basic code block but this can be 
extended to scan and load PDF, html, csv, excel data 
sources. We also integrated a retrieval component to 
demonstrate how we can query the vector database to 
retrieve most similar data and then send it to the LLM 
model to summarize and produce response in natural 
language. 

Step 1: Create an Vector index data store in Pinecone 
SAAS database having dimension size of 1536 and 
supporting cosine metric for retrieval 

 

Fig -4: Pinecone console UI to create index 

 

 

Step 2: Following python modules should be installed 
first. 

pip langchain 

pip pinecone 

Step 2: Run the QnA python code snippet shared below 
which demonstrates how the text data is vectorized using 
OpenAI’s api and stored in the Pinecone database created 
in Step 1.  

Also similar documents are retrieved based on the given 
queries and passed the context to LLM to generate human 
readable answers in natural language. 

import langchain, pinecone 

 

from langchain.llms import OpenAI 

from langchain.vectorstores import 

Pinecone 

from langchain.document_loaders import 

DirectoryLoader 

from langchain.embeddings.openai import 

OpenAIEmbeddings 

from langchain.chains.question_answering 

import load_qa_chain 

from langchain.text_splitter import 

RecursiveCharacterTextSplitter 

 

 

directory_path = 'data' 

 

PINECONE_ENV = "<pinecone env>" 

PINECONE_API_KEY = "<pinecone apikey>" 

PINECONE_INDEX_NAME = "qna-private-

enterprise-business-data-pinecone" 

 

OPEMAI_API_KEY = "<openai apikey>" 

 

# Set up Pinecone client 

pinecone.init(api_key=PINECONE_API_KEY, 

environment=PINECONE_ENV) 

index = 

pinecone.Index(PINECONE_INDEX_NAME) 

print("******** Pinecone initialized. 

Index status ********\n") 

print(str(index.describe_index_stats())) 

print("**********************************

*****************\n") 
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# Load the source documents (e.g. 

frequently asked Q/A for ecommerce site) 

def load_documents(directory_path): 

  print("\nSTEP 1:: Scanning directory & 

loading all the documents ") 

  loader = 

DirectoryLoader(directory_path) 

  documents = loader.load() 

  print("Found ecommerce FAQ sample ... 

loading the document for chunking\n") 

  return documents 

 

 

# split or chunk the texts based on fixed 

chunk size (1000) 

def split_docs(documents, chunk_size=500, 

chunk_overlap=20): 

  print("\nSTEP 2::  Started Chunking the 

document ") 

  text_splitter = 

RecursiveCharacterTextSplitter(chunk_size

=chunk_size, chunk_overlap=chunk_overlap) 

  chunks = 

text_splitter.split_documents(documents) 

  print("***** Total Number of documents 

chunked:: " + str(len(chunks)) + "\n") 

  return chunks 

 

 

# Generate Embeddings using OpenAI's 

Embeddings model and store into Pinecone 

database 

def generate_embeddings(): 

  print("\nSTEP 3::  Initializing OpenAI 

Embeddings model for converting docs into 

vectors") 

  embeddings = 

OpenAIEmbeddings(openai_api_key=OPEMAI_AP

I_KEY, model="text-embedding-ada-002") 

  return embeddings 

 

 

def 

store_embeddings_in_pinecone(embeddings): 

  print("\nSTEP 4::  Store the embeddings 

into the Pinecone vector db ") 

  index = Pinecone.from_documents(chunks, 

embeddings, 

index_name=PINECONE_INDEX_NAME) 

  return index 

 

# Retrieve similar documents from 

Pinecone 

def get_similiar_docs(query, k=1): 

  similar_docs = 

index.similarity_search(query, k=k) 

  return similar_docs 

 

 

def get_answer(query): 

  model_name = "text-davinci-003" 

  llm = OpenAI(model_name=model_name,  

temperature=0, 

openai_api_key=OPEMAI_API_KEY) 

  chain = load_qa_chain(llm, 

chain_type="stuff") 

 

  similar_docs = get_similiar_docs(query) 

  answer = 

chain.run(input_documents=similar_docs, 

question=query) 

  return query + " \nAnswer:: " + answer 

+ "\n\n" 

 

print("\n****** Starting Enterprise data 

ingestion to load FAQ articles into 

Pinecone vector db******") 

loaded_docs = 

load_documents(directory_path) 

chunks  = split_docs(loaded_docs) 

 

embeddings = generate_embeddings() 

index = 

store_embeddings_in_pinecone(embeddings) 

print("*************** Ingestion 

completed ***************\n") 

print("**********************************

*****************\n") 

 

print("\n****** Starting Retrieval using 

OpenAI and context from Pinecone vectordb 

******\n") 
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query1 = "How to cancel my order ?" 

print("Question 1:: " + 

get_answer(query1)) 

 

query2 = "Do you have any loyalty program 

?" 

print("Question 2:: " + 

get_answer(query2)) 

 

query3 = "How do I reset my password ?" 

print("Question 3:: " + 

get_answer(query3)) 

 

query4 = "Can I return a product 

purchased using store credit?" 

print("Question 4:: " + 

get_answer(query4)) 

 

query5 = "What to do if a wrong item is 

received ?" 

print("Question 5:: " + 

get_answer(query5)) 

 
Code execution results and pinecone index dashboard 
from Windows terminal. 
 

 
 

Fig -5: output of Ingestion code (in the terminal) 
 

 
 

Fig -6: Stored Vectors in the Pinecone database 
 

5. CONCLUSION 
 
In this article we demonstrated how we can leverage the 
Retrieval Augmented Generation technique to provide a 
context to the Large Language Model to generate human 
understandable responses in natural language which can 
be used as an Enterprise Intelligent QnA system that could 
help the internal as well as external stakeholders to 
perform AI based search to find answers out of the huge 
knowledgebase. We also demonstrated how the enterprise 
knowledge articles are ingested as Vectorized format into 
Vector database (Pinecone) which could be used to find 
similar answers out of huge data using cosine algorithm 
and then use the Open AI’s completion API to generate the 
meaningful answer. A sample python code is used to 
demonstrate the flow which can be enhanced more with 
added features and cater to the required use case. 
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