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Abstract - In this paper, many results of Fourier analysis
which are known for convolutable Banach spaces of
distributions (BCD-spaces) and Frechet spaces of distributions
(FD-spaces) have been generalized to convolutable Frechet
spaces of distributions (CFD-spaces). Also, we discuss the dual
space of a CFD-space and obtain some useful results about
homogeneous CFD-spaces.
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1. INTRODUCTION

In [7] some results of Fourier analysis, which are known for
L"(1<p<oco),C and M etc, were obtained for

convolutable Banach spaces of distributions (BCD-spaces).
But those results cannot be applied to some important

spaces like C” (the space of all infinitely differentiable
functions). Also, in [6] some results of Fourier analysis were
obtained for Frechet spaces of distributions (FD-spaces). But
those results cannot be applied to some important spaces
like Hardy’s spaces H?(1 < p < 0o). To overcome these

deficiencies, in this paper we define the convolutable Frechet
spaces of distributions (CFD-spaces).

In Section 2, we define CFD-spaces and state some
preliminary results dealing with CFD-spaces. In Section 3, we
define homogeneous CFD-spaces and obtain some important
results about homogeneous CFD-spaces. In Section 4, we
discuss the dual space of a CFD-space and obtain some useful
results.

2. DEFINITIONS, NOTATIONS EXAMPLES AND
PRELIMINARY RESULTS

We refer to [1], [5] and [8] for all the standard definitions,
notations and assumptions. In particular, all our
distributions are assumed to be defined on the circle
groupG =R /2w Z, and the space of all distributions is

denoted by D.

2.1 Definition

A Frechet space E is called a convolutable Frechet space of
distributions, briefly a CFD-space, if it can be continuously
embedded in (D, strong*), and if, regarded as a subset of D; it
satisfies the following properties:

(21) ueM,f e E= ux*f e E,where Mdenotes the set
of all (Radon) measures.

(2.2) C® N E isaclosed subspace of C*.

It is obvious that every BCD-space is a CFD-space (see the

definition of BCD-space in [7]). But C* is a CFD-space which
is not a BCD-space as it is not a Banach space.

Throughout the paper, E, if not specified, will denote a
CFD-space and E*will denote its strong*dual (see [8], Ch. 10).

2.2. We now give an example of a non-empty Frechet space
E continuously embedded in D which satisfies the
assumption (2.1) but not (2.2).

Let E be thesetofall f € C” such that HfHE < oo where

= ||D*f|
fl = N7 " e
Ifle=2"0p)

Then E is the required space as every Banach space is a
Frechet space (see [7]).

2.3. Now, we give an example of a non-empty Frechet space
E continuously embedded in D, such that (2.2) is satisfied but
not (2.1).

Let M, (G) denote the set of purely discontinuous measures

on G i.e, the set of all those measures i on G for which there
exists a countable subset A4 of G such that |ﬂ| (A®)=0.Then

M, (G) is the required space (see [7]).

The above examples show the independence of both the
assumptions taken in the definition of a CFD-space.

2.4. Theorem. Let E be a CFD-space. Then the
transformation S : M x E — E defined by
S(u,f)=pu*f foreach yeMand f € E,

is continuous on M x E . Further, for each continuous
seminorm p on E, there exists a continuous seminorm q on
Esuchthat p(u* f)<| |, q(f) foreach 4 € M and for

each f e E.
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Proof: Fixing x in M, consider the mapping T,:E - E

defined by T,f=wu*f for all feE. Now, E is

continuously embedded in D and T1 is continuous on D. So,

using the closed graph theorem, we can show that T1 isa
continuous linear operator on E. Similarly, if we define the
mapping T, M > E by T, u=pu=*f forall ueE,
after fixing f in E, then T, turns out to be linear and
continuous. Thus the transformation S: MxE — E,
defined by S(u, f)= u* f is bilinear and separately

continuous; and hence by ([5],p.52), S is (jointly) continuous
on MxE.

Further, by ([2], Exercisel, p.363), for each continuous
seminorm p on E, there exists a continuous seminorm q on
E such that

p(ue* f)<|| ully q(f) foreach £ € M andforeach f € E.

Taking i as the nth Fejer's kernel in the above theorem, we
obtain the following.

2.5. Corollary. IfE is a CFD-space, then for each continuous
seminorm p on E, there exists a continuous seminorm q on E
such that

p(o, (f))<a(f)

where o, f=F *f and F, denotes the nth Fejer's kernel.

Taking u as the Dirac measure at the point x in the above
theorem, we obtain the following.

2.6. Corollary. If E is a CFD-space, then E is translation
invariant and for each continuous seminorm p on E there
exists a continuous seminorm g on E such that

p(T,f)< q(f) foreach XeG andforeach f € E.
where T, f denotes the translation of f by x.

Also, it shows that {T. « - XE G} isan equicontinuous family

of translation operators on E.

Using the closed graph theorem, and the fact that C* N E
is closed in C*, we can easily prove the following.
i:C"NE—E is

continuous, where C* M E has the relative topology of C*.

2.7. Lemma. The inclusion map

2.8. Theorem. A necessary and sufficient conditions for
PNE to be dense in E is that C> M E is dense in E,
where P is the set of all trigonometric polynomials.

Proof: One part is obviousas P < C”.

Conversely, suppose C*° M E is dense in E. Let d be the

metric on E induced by

& 2 p(f)
f — Kk
Ifle=2 1075

where {pk }Okozl is a countable family of seminorms on E
which defines the locally convex topology of E.
GivenfinE and & > 0, there exists U € C* N E suchthat
d(f,u)<e/2.

Now,

o,u —>uinC%asn —wando UECTNE VNeZ.

Since 1:C* M E — E is continuous by above lemma,
o,U—>U in C¥N E with relative topology of E. So

corresponding to & > 0, there exists N > O such that
d(o,u,u) < /2 foraln>N.

Hence,

d(ou, f)<d(f,u)+d(ou,u)<eforalln>N.

Therefore P M E is densein E.

3. HOMOGENOUS CFD-SPACES

Homogenous Banach subspaces of L1 defined on the circle
group G are discussed in [3] and many results of Fourier
analysis on these spaces are generalized to homogeneous
BCD-spaces in [7] and to homogeneous FD-spaces in [6]. We
define homogeneous CFD-space as follows.

3.1. Definition. A CFD-spaceE is said to be homogenous if
X —> Xo inG implies T, f - T, f inE for each feE.
3.2. Theorem. Every homogeneous FD-space is a
homogeneous CFD-space.

Proof: Let E be a homogeneous FD-space From the
definition of a FD-space and Theorem 5.5 (iii) of [6],

ueM, f eE= u*f eEand C* N E =C™is closed

in C” as C*® C E .Thus E isa CFD-space.
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But converse of the above theorem is not true as shown in
the following example

3.3. CFD-spaces which are not FD-spaces

For p>1, consider the Hardy space H " defined by

HP ={f € L”: f(n)=0for n<0}.

Clearly HPis a homogeneous BCD-space for 1< p < oo
([7], 2.2) and we know that every BCD-space is a CFD-space,

therefore H Pis a homogeneous CFD-space for 1< p<oo.

But H"is nota FD-spaceas C*isnot containedin H".

3.4. Example of a non-homogeneous CFD-spaces is M .

The proof of the following lemma and theorem are just like
the ones given in 5.2 and 5.3 of [6].

3.5. Lemma. Let E be a Frechet space, ¢ a continuous E-

valued function on G and {K_ }~, a summability kernel

(approximate identity), then
. 1
lim = [Kq () #(t) dt = $(0)
n—o 277

where the integral is taken over G.

3.6. Theorem. If E is a homogeneous CFD-space, then for
each feE,of > f inE as n—> o, where o, f

denotes the n-th Cesaro sum of the Fourier series of f.

3.7.Theorem. A CFD-space E is homogeneous ifand only if
P NE isdenseinE.

Proof: Let E be homogeneous. Then by the above theorem,

for each f €eE,o,f > f in E as n—oo. Hence

P NE isdenseinE.
Conversely, suppose P M E isdenseinE.Let f € E and
&> 0. Since {T, : X € G} is an equicontinuous family of

translation operators on E, by Corollary 2.6., there exists a
0 > 0 such that

(31) d(f,g)<o=d(T f,T,g9)<el/3.
Since C™ M E isdense in E (see Theorem 2.8), we may fix

afunctiongin C* M E suchthatd(f,g)<J.

Now T,g —T, gin C"asX —> Xjand therefore by

Lemma2.7, T, =T, gin E asX = X,.So3 77 > O such
that
(B2) [x—X,|<p=d(T,f,T, g)<e/3.
Also, d(T,f T, f)

<d(T, f,T,09)+d(T,9.T, 9)+d(T, T, T, Q).
Thus by (3.1) and (3.2),

d(T, f ,Txof)<8 for |X—XO|< n.

Hence, T f —)TXO f inEas X — X,, whichshows that E is

homogeneous.

Using Theorem 2.8, Theorem 3.6 and the above theorem, we
get the following.

3.8. Corollary. Let E be a CFD-space. Then the following
four results are equivalent:

(i) E is homogeneous;

(i) P N E isdenseinE;

(iii) C>° N EisdenseinE;

(ivyVfeE, o,f > finEasn—>o.

4. DUAL SPACES

If E is a Frechet space, then E* need not be a Frechet space.
So, if E is a CFD-space, we cannot say that E* is also a CFD-
space. However we can still embed E* in D and treat the
elements of E* as distributions. For this we have to make a
one to one correspondence between the elements of E*and

the elements of D. The task would have been easier if C”
had been contained in E, but it is not. So, we define the
following sets

(41) S={neZ:e,eE},Sy ={neS:|n|<N}and

The proof of the following four results is similar to the
corresponding results in [7].

4.1. Lemma. €, € E if and only if f(n) #0 for some
feE.

Using the definition of S and the above lemma we
immediately get the following.
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42.n¢gS=f(n)=0 V f eE.

o0
From now onwards, by Z 8y we shall mean Z ay and, by
k=1

E &y we shall mean lim E a .
N —o0
S kESN

4.3. Lemma. For U = Zlﬁ(k)ek € C”, define

Pu=>"a(k)e.

Then Pis a continusous projection of C* onto C* N E.

Letus define j: E* — D by

j(F)(u) = F(Pu)forall uinC” and for all Fin E*
where P is the projection defined in the above lemma.

Now, we can claim the following (See [7], Theorem 4.1)

4.4. Theorem. Let E be a CFD-space. Then E* can be
continuously embedded into D through the mapping jand
as a subset of D, it satisfy the following properties:

(42) ueM,feE'=>uxfekE”
(4.3) C” N E"isa closed subspace of C*.

4.5. Theorem. Let E be a homogeneous CFD-space and
F € E”.Thenfor each f € E,thefunction g(X),defined
by g(x)=F (T, f) forall xe G, is continuous on G and

\2
generates the distribution F = f .Moreover, there exists a

continuous seminorm q on E such that

IF*f|. < q(f) VfeE.
Proof: As E is homogeneous,
X>%ING=Tf >T f inE.
Also, F is continuous on E. Hence §(X) is continuous on G

for each f € E. Now, by the Corollary 2.6., the family
{T, : xeG} of

equicontinuous,

translation operators on E is

{FoT, : xeG} is also
equicontinuous. So, using Theorem 9.5.3 ([4], p.203), there

therefore

exists a continuous seminorm g on E such that

|g(x)|=| F(T,f)| <q(f) Vf € E and VX € G .Hence,
@4 llgll.<q(f) vieE,

Now our aim is to prove that Q(X) generates the

distribution F * ¥ .Define g, (X) = F(o,T, ) foreveryx

in G. Since E is homogeneous, by Theorem 3.6,
oT.f->Tf inE

Consequently,

(4.5) 9,(x)=F(o,T,f)>F(,f)=g(x) as N =, for

every x .
Now, for every f in E,

limo,F(f)=limF(c,f)=F(f) as E is homogeneous.
Nn—o0 nN—oo

By ([8], Theorem 9.3.4.), {o, F} is an equicontinuous family

of continuous linear functional on E which converges
pointwise to F in E*. Therefore arguing just as above, we
can find a continuous seminorm ' in E such that for all

positive integers n,
|6 (F * £)(X) |=| o, F (T, F)| <q'(f) ¥x e G ,Vf e E
which gives that || & (F * ) ||, =O() .

Therefore F # f & L, and, for a.e. x,

9.(x) =0, (F* £)(X) > F * f (X) as n = o0,
Now, it follows from (4.5) that

g(x)=F = %(x) fora.e.x

Hence g(X) generates the distribution F * ? ,
ie, g=F=* ? in the sense of distribution.

Now, from (4.4), || F * ? Il.<q(f)forallfinE.

4.6. Theorem. A CFD-space E is homogenous if and only if

forevery f € E and F € E™, the series

46 > F(n)f(-n)
is (C, 1)-summable to F ().

Proof: One part is clear from Theorem 3.6 and the fact that
F (O‘n f) is the n-th Cesaro sum of (4.6). Conversely,

suppose that the series (4.6) is (C, 1)-summable to F(f)
for every fin E and F in E*. Then

lim F(o,f)=F(f) VfeE andV FeE".
N—0o0

This shows that &, f converges weakly to f in E for every f

in E. Thus P m"E is weakly dense in E. Since P " E is
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convex, P N E is strongly dense in E by ([5], p.66). Hence
by Theorem 3.7, E is homogenous.

5. CONCLUSIONS

In this paper we define Convolutable Frechet Spaces of
Distributions (briefly written as CFD-spaces) and generalize
the previously known results to CFD-spaces. We have used
various results and techniques of Functional analysis to
obtain these results. The results obtained will be useful for
further analysis in the field of Fourier analysis and
Functional analysis.
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