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1.INTRODUCTION 

Jordan canonical form is a specific type of upper triangular 
matrix's representation of a linear transformation over a 
finite dimensional vector space. Every such linear 
transformation has a distinct Jordan canonical form with 
the nice properties. It is simple to explain and well-suited 
for calculation. Every square matrix is similar to a unique 
matrix in Jordan canonical form, because similar matrices 
correspond to representations of the same linear 
transformation with respect to different bases, according 
to the change of basis theorem. Jordan canonical form is a 
generalisation of diagonalizability to arbitrary linear 
transformations (or matrices); in fact, the Jordan canonical 
form of a diagonalizable linear transformation (or matrix) 
is a diagonal matrix also. To compute Jordan canonical 
form, most researchers in matrix theory and most users of 
its methods are aware of the importance of graphs in 
linear algebra. This can be seen from the large number of 
papers in which graph theoretic methods for solving 

problems in linear algebra are used. The use of 
combinatorial and graph theoretic methods for 
understanding the Jordan canonical form has a long 
history. In 1837, Jacobi showed that a square matrix of 
order n is similar to an upper triangular matrix. Many 
proofs of the Jordan form rely on this result. 
Directed graphs may help in dealing with several problems 
in neural networks and learning systems, network science 
and engineering, and automatic control[1]–[8]. Previously, 
Cardon and Tuckfield [9] proposed an algorithm for finding 
the Jordan canonical form of a class of non-diagonalizable 
zero-one square matrices - with the property that each 
column has at most one nonzero element - using the directed 
graph (digraph) tool. The Jordan form was obtained for the 
adjacency matrix describing the directed graph. 

It is possible to date the beginning of graph theory to 1735, 
when the Swiss mathematician Leonhard Euler found an 
answer to the Königsberg bridge puzzle [10], [11]. The 
Königsberg bridge problem was an old puzzle that involved 
trying to find a way over each of the seven bridges that span 
a branched river that flows by an island without using any of 
them more than once. As shown in Figure 1, there were 
seven bridges in the city crossing a waterway between two 
banks and two islands. The question was whether it was 
practical to cross every bridge just once and return to the 
starting point of the journey. The response was no, it is 
impossible to cross every bridge precisely once. It should be 
mentioned that the Königsberg bridge problem is not a 
simple graph example because there are multiple edges 
connecting the same two nodes, which is acceptable in a 
multigraph. In a multigraph with four vertices and seven 
edges, the issue mathematically comes down to finding an 
Eulerian cycle [11]. 
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Abstract – The difficult task of creating the Jordan 
canonical form is handled only for a class of zero-one square 
matrices with the additional property that each column has at 
most one nonzero element. The method is based on the 
construction and analysis of the adjacency matrix of directed 
graph. The computational study focuses primarily on the 
creation of the Jordan canonical form and modal matrix which 
contains eigenvectors and generalized eigenvectors.  
The computation's accuracy is measured by calculating the 
difference between the provided matrix and that created 
by combining the Jordan form and the modal matrix. Both 
the maximum element in absolute value and the Frobenius 
norm of the difference matrix - defined as the difference 
between the given and computed matrices - are used as 
error measures. The computational investigation is carried 
out by creating a set of MATLAB functions that can be seen 
as a novel contributed toolbox. Fortunately, it was 
discovered that this toolbox outperformed the built-in 
MATLAB function "jordan" because the contributed toolbox 
successfully processed square matrices of order up to 1000 
while the built-in function of the MATLAB lingered for 
matrices of order between 40 to 60. 
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Figure 1: Königsberg bridge puzzle (a) Real seven bridge 

problem, (b) Bridge puzzle  graph representation [12]. 

Data charts like line graphs and bar graphs are not 
considered graphs in the context that the term is used in 
graph theory. Instead, it describes a collection of edges (or 
lines) that connect the vertices, which are points or nodes. 

Graphs are widely used models of both biological and 
artificial systems. They can be used to simulate a wide range 
of relationships and processes in computer science[13]–[15] 
such as artificial intelligence [16],  physical, biological such 
as the human brain networks and functions[17]–[19], and 
social systems. Graphs can be used to represent a wide range 
of practical issues. In general, graph theory has numerous 
applications in a variety of disciplines. 

Almost every biological research begins with an analysis of 
interactions in biological systems. Graph theory, as a 
mathematical formal language, seeks to describe 
relationships and interactions between objects as an 
essential tool [20], assisting in the analysis of biological 
interaction networks at various scales. Many applications of 
graph theory to biology have been suggested and developed 
over the last few decades [21], [22] 

A network can be used to address a wide range of issues 
[23], [24] such as a system of roads [25], study natural 
phenomena [26], in industry fields such as fabric design 
[27],study the connectivity and dysconnectivity of networks 
[28], subnetworks [29], modelling nano scale networks [30], 
[31], electromagnetic systems [32], railroads, or electric 
lines and circuits, etc. [40]– [58]. 

In software development graph theory is used to visualize 
software component [52], [53] and in mathematical science 
graph theory is a strong tool to solve problems [54], [55]. 

In chemical field, graph theory is used to visualize the 
structure of molecules [44], [47]. These systems build 
networks that can be formulated using a graph as a model. 
This can be thought of as an abstract representation of a 
collection of items that are linked together in pairs. 

It can be used to simply model the topology of space, which 
is the connectivity between different components of space. 
But in order to properly understand why and what graphs 
exist, one must go deeply into graph theory. Graph theory is 
the field of discrete mathematics which studies networks of 
points that are linked by lines.  

Graphs and matrices are inextricably linked. A matrix is a 
collection of numbers that are arranged in rows and columns 
to form a rectangular array. Some matrices can provide 
useful information about graphs, such as how many vertices 
are connected, how many paths exist between two vertices, 
and so on [56],[57]. 

An adjacency matrix is a matrix of zeros and ones that 
determines whether two vertices have an edge between 
them. If two vertices are connected, the number 1 is inserted 
at the corresponding matrix entry [58]. 

Jordan Canonical Form (JCF). In 1987, Richard 
A. Brualdi proved that the Jordan canonical form has the 
greatest number of off-diagonal zero entries among all 
matrices that are similar to a given square complex matrix. 
He also described the matrices that achieve this highest 
number [59]. 

The reason for developing a MATLAB toolbox for calculating 
the JCF is that the built-in function in MATLAB called 
“jordan” fails to calculate the JCF of square matrices of order 
higher than 60. This is due to the sensitivity of computing the 
JCF. Consider the following matrix A: 

1 1

1
A

x

 
  
 

 

Matrix A is non-diagonalizable. However, the matrix is a 
Jordan block if x=0. This means A=J. Hence, the first column 
of the identity matrix I is an eigenvector and the second 
column is a generalized eigenvector.  

0

1 1 1 1

1 0 1
x

A J A
x



   
      
   

 

On the other hand, if 0x  , even if x is very small number, 

matrix A  becomes diagonalizable, and J A . The diagonal 

matrix D of A is 

1 0

0 1

x
D

x

 
  
  

 

As a result, developing an accurate numerical algorithm for 
Jordan form computation is difficult and sensitive. For this 
reason, the Jordan Form is typically avoided in numerical 
representation. 

 

2. JORDAN CANONICAL FORM 
 
Let   :f    be any function, where  is natural number. 

For each n N , define the square matrix  ,i ja
n

A  of 

order n by: 

 
,

1 ,                 ,  

0
i j

         if  i f j i j
a

                                      otherwise

 
 


 
 (1) 
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Matrix 
n

A  can be regarded as the adjacency matrix of a 

digraph (directed graph) 
n  with vertices labeled 1, ,n  

having a directed edge from vertex j  to vertex i  if and only 

if ( )i f j . 

Remark: The out-degree of any vertex must be less than or 
equal to one.  
We consider a partition of the weighted directed graph 

n , 

into chains and cycles. The Jordan decomposition of the 
weighted adjacency matrix A  will be related to the lengths 
of these chains and cycles. Some definitions related to Eq.

 (1) are next presented. 
 
Merge points: the points which have an in-degree greater 
than one. 
 
Terminal points: the vertices having a zero outdegree and 
the vertices having a function value larger than the order of 
the adjacency matrix A . For example, for a matrix A  of 

order 5, if  3 500f   then vertex 3 is a terminal point. 

Fortunately, MATLAB has two built-in functions called 
“indegree” and “outdegree” that give the merge points and 
the terminal points respectively. 
 
Cycle: A set of vertices such that each vertex is a function of 
the previous vertex. For example, the first vertex continues 
to be a function of the last vertex of the cycle. Moreover, 
when a cycle is extracted, it should be written according to 
the sequence of its vertices no matter which vertex is the 
starting one. 
In MATLAB, a function called “allcycles” is modified in order 

to obtain the cycles  1, , rZ   Z  Z  of a directed graph 

n . The result is in a form of a cell array containing the 

extracted cycles. 
 
Chain: a set of vertices that is connected in an open looped 
sequence. The last vertex of this set sequence can be either a 
terminal point, or its function (the following point not 
included in the set) is a merge. However, that merge point 
can be located on either another chain or a cycle.  
Remark: a single point can be considered a cycle if the 
function of the point is the point itself. Alternatively, it can be 
considered a chain when the function of this point is 
unidentifiable. 

If the graph does not contain cycles   Z  , the MATLAB 

routine “findchains” considers the graph as group of chains 
only. Then, it starts to extract chains sorted by length in a 
cell array. If the graph includes cycles, the found cycles Z  
are excluded from the graph using the code “findchains2”, 
hence the remaining edges represent chains  

 1,..., SC C  C  of the graph n . The resulting array of 

chains is sorted in descending order of the lengths of the 

chains. For instance, length  1C  is the largest, and length 

 SC  is the smallest. 

The combination of cycles and chains represents the proper 
partition P  of graph 

n , where 
1 1 },.., , ,..{ .,r SP Z Z C C  

according to definition 3 in [9].  
Remark: the proper partition is not unique i.e., if two proper 
partitions exist 

1 1 }, , , .{ , ..,r SP Z Z C C  and * * * * *

1 1,..., , }, ,{ r SP Z Z C  C , 

then the two groups of cycles 
1 }, ,{ rZ  Z  and  * *

1 , , rZ  Z  

are the same up to reordering and the two groups of the 
chains are not the identical but have the same lengths of 

each chain i.e.,    *

i iLen C Len C  for 1≤ i ≤ s . For 

example, the following graph has proper partition: 

         1 2 1 2 31,4,2 ,   5,7 ,      8,6,3 ,   11,10 ,  9Z Z C C C    

Another one,  

         1 2 1 2 31,4,2 ,  5,7 ,      11,10,3 ,   8,6 ,  9Z Z C C C    

 

 
Figure 2: Example 1 digraph. 

 

0 1 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0

A

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 

 

Definition 1. Let A  be an adjacency matrix 
corresponding to a digraph, and let v  be a generalized 
eigenvector corresponding to eigenvalue  . Let p be the 

smallest positive integer such that     0
p

A I v  ,where 

p is the length of the chain of the generalized eigenvector , 

though the generalized eigenvectors of matrix A  in order are 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 10 Issue: 07 | July 2023              www.irjet.net                                                                        p-ISSN: 2395-0072 

  

© 2023, IRJET       |       Impact Factor value: 8.226       |       ISO 9001:2008 Certified Journal       |     Page 98 
 

           1 2
,   ,  , ,

p p
A I v A I v A I v v  

 
     which is 

called a chain of generalized eigenvectors of A  
corresponding to  . The first term in the ordered set is an 
eigenvector. 

The eigenvalues, eigenvectors and generalized 
eigenvectors can be computed by MATLAB through two 
different approaches: the zero-one matrix and the weighted 
matrix. These approaches are discussed briefly in the next 
two sections. In order to proceed to the calculation of the 
eigenvalues and generalized eigenvectors, one resorts to 
theorem 6 in [9]. 

2.1 Eigenvalues 
 

Each vertex in the graph has an associated eigenvalue. First, 
eigenvalues associated with cycles composed of one vertex are 

set to 1, hence its Jordan block illustrated in definition.1 is  1 1J . 

When the cycle has two or more vertices, one computes the 

primitive j  root of unity 
2

j

j

i
exp




 
  

 
 

  where j  is the 

length of the cycle. Consequently, the eigenvalues pertaining to 

the vertices starting from the first vertex are  , 2 ,…, h , 

where h  is the number of vertices in the cycle. This gives the 

Jordan blocks      2

1 1 1, ,..., hJ J J   . For example, let the 

cycles of a proper partition be  1, ..., rZ  Z   Z  where 

1 },{ ,
jjZ z  z  is any cycle in Z  of length 

j
 and 1 ≤ j  ≤ 

r . Finally, in order to get the eigenvalue pertaining to the k
th
 

vertex in a cycle of length 
j
, one applies: 

1,
2

,

k

k

j j

j

 ,   k
i

exp






 

  
 


  (2) 

The subscript j  refers to the cycle number in a proper partition 

since a value of 2  in a cycle of three vertices is definitely 

different from the value of 2  in another cycle of a different 

number of vertices. 

The eigenvalues associated with the vertices of the chains are set 
to be zero. Let the chains of a proper partition be 

 1 2, , sC C  C C   where 1 2{ }, , ,
uuC c  c   c   and length 

 u uC   and 1 ≤ u  ≤ s . Hence, the Jordan decomposition has 

 0
u

J  block associated to chain 
uC  and the order of the Jordan 

block is equal to the length of the chain. Therefore, the 
eigenvalues are independent of the values of the vertices although 
they depend on the location of the vertices whether they are on a 
cycle or a chain.  

Example.1 the proper partition P  for a graph   in Figure 2 is 

   1 21,4,2 ,   5,7Z Z  ,      1 2 38,6,3 ,   11,10 ,  9C C C   . 

The eigenvalues of example 1 are listed in Table 1. 

 Table 1. Example 1 eigenvalues. 

No. Eigenvalue’s 

numbering 

associated 

to vertex 

number (  ) 

Substitution in Eq. 

 

 (2) 

The 

eigenvalue 

Notes 

1 
1  

1

1

2 *1

3

i
exp




 
  

 
 

1 3

2 2
i     

The 3 

roots of 

unity 

2 
4  

2

1

2 * 2

3

i
exp




 
  

 
 2 1 3

2 2
i     

3 
2  

3

1

2 *3

3

i
exp




 
  

 
 

3 1   

4 
5  

1

2

2 *1

2

i
exp




 
  

 
 

1    The 2 

roots of 

unity 

5 
7  

2

2

2 * 2

2

i
exp




 
  

 
 

2 1   

6 
8  N/A 0 These 

are 

vertices 

associat

ed to 

chains 

7 
6  N/A 0 

8 
3  N/A 0 

9 
11  N/A 0 

10 
10  N/A 0 

11 
9  N/A 0 

 

2.1 Eigenvectors 
 
The eigenvectors (generalized eigenvectors) are computed 
according to theorem (6) of [9]. The eigenvectors associated 
to the vertices of one cycle are 

1 j

kj

k zj
v e


 (3) 

In order to relate the above equation to the eigenvalues pertaining 
to the cycle, re-express it as: 

1

1j

h

h

k zh
k

v e


 
  

 
 (4) 
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where j  is associated to the cycle containing vertex 
kv , and 

h  is the vertices counter of the cycle as mentioned in Eq.  

 (2). 
Next generate the eigenvectors associated to chains. For 
chain 

1{ ,..., }cC c  two cases can arise: 

1. c  is a terminal point of the graph i.e., 0( )f c   or 

( )f c n : here the chain is flipped such that each vertex 

kc  is attached to generalized eigenvector equals 
kce , 

1 k l   i.e. 
1

{ , },
lc ce e  is a chain of generalized 

eigenvectors of 
nA  pertaining to an eigenvalue of 0.  

2. ( )lf c  is a merge point on a cycle or a chain: let z  be the 

vertex on a cycle or a chain containing ( )lf c  such that 

  ( )m

lf f cz  . Then 

     1 2
3 2 1

{ , }, , ,
l

mc c c c zf zfz zf
e   e  e  e e  e e  e      is a chain 

of generalized eigenvector attached to an eigenvalue of 0. 

 
Note: By convention, the first element of a chain of 
generalized eigenvectors is the eigenvector and the 
remaining ones are generalized eigenvectors, but the 
eigenvector corresponds to the last element of the chain of 

vertices  1,..., mc  c  in Lemma 10 of [9]. Hence, the order of 

indices in the subscripts is reversed. The eigenvectors are 
listed in Table 2. 
 
In MATLAB, the developed codes “jeig” and “jeigv” compute 
the eigenvalues and eigenvectors respectively. The 
generalized eigenvectors (including the eigenvectors) form 
the columns of a matrix called the “Modal matrix (Q )”. 

 
 
 

Table 2. Example 1 eigenvectors. 

Vertex 

Eigen-
vectors 

(
kv ) 

Substitution in Eq. (4) 
The corresponding 

eigenvalue 
Notes 

1 1v  

1 2 3

1 1 4 21 1 1

1 1 1

1 1 1
 v e e e
  

     
       
     

 

 
2

1 1

1 1 1 4 2e e e     

1 1 4 2

1 3 1 3

2 2 2 2
v i e i e e

   
            
   

 

1

1

1 3

2 2
i     

Those are the 3 roots of 
unity 

4 2v  

1 2 3

2 1 4 22 2 2

1 1 1

1 1 1
 v e e e
  

     
       
     

 

 
2

1 1 1 4 2

1 1e e e    . 

2 1 4 2

1 3 1 3

2 2 2 2
v i e i e e

   
            
   

 

2

1

1 3

2 2
i     

2 3v  

1 2 3

3 1 4 23 3 3

1 1 1

1 1 1
 v e e e
  

     
       
     

 

1 4 2e e e    

3

1 1  . 

5 4v  

1 2

4 5 71 1

2 2

1 1
 v e e
 

   
    
   

5 7e e    1

2 1    

Those are the 2 roots of 
unity 

7 5v  

1 2

5 5 72 2

2 2

1 1
 v e e
 

   
    
   

 

5 7e e   

2

2 1   

3 6v  6 3 4v e e   0 

These are vertices 
associated to chains 

10 7v  7 10 1v e e   0 

11 8v  8 11 2v e e   0 

6 9v  9 6 10v e e   0 

8 10v  10 8 11v e e   0 

9 11v  11 9v e  0 

  



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 10 Issue: 07 | July 2023              www.irjet.net                                                                        p-ISSN: 2395-0072 

  

© 2023, IRJET       |       Impact Factor value: 8.226       |       ISO 9001:2008 Certified Journal       |     Page 100 
 

1 3 1 3
1 0 0 0 1 0 0 0 0

2 2 2 2

1 1 1 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0

1 3 1 3
1 0 0 1 0 0 0 0 0

2 2 2 2

0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 1 0 1 0

Q

 
     
 

 
 
 
 
     
 
 
 
 
 
 
 
 
 
 
 

 

 

Finally, the Jordan form can be calculated from: 

1

1 3
0 0 0 0 0 0 0 0 0 0

2 2

1 3
0 0 0 0 0 0 0 0 0 0

2 2

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

J Q AQ

 
  
 
 

  
 
 
 

 
  
 
 
 
 
 
 
 
 
 
 

 

 
2. COMPUTATIONAL ANALYSIS 
 
An extensive work is conducted expanding that reported in 
[60]. A set of MATLAB functions - forming an experimental 
toolbox - is developed in order to obtain the components of 
the digraph associated with the zero-one matrix under 
investigation.  
Vectors s and t initiation. First, the random generation of 
starting and ending vertices of each edge in the graph, s and t 
respectively, is done by the built-in MATLAB function 
“randi”. This random selection considers the creation of two 
vectors, s and t, of length less than or equal the current 
matrix size in the investigation scope. For example, the 
investigation is carried out for matrices of size 10 to 1000 
with increment of 10. If the current loop counter is 3 then 
n=30 and the length of s and t vectors is less than or equal 
30. The code initiates a vector s that is of length equal 30. 
Next, the role of function “randi” starts to select less than or 
equal 20% of the starting points in s to be removed. Hence, 
in the case of n = 30: 6, 5, …,1 or 0 starting points with 
random vertices numbers are removed. This procedure 
ensures that the starting points have no duplicates in order 

to get vertices with outdegree equal 0 or 1; however, the 
indegree of any vertex can be greater than or equal to 1. 
 
Construction of digraph. Each vertex must have an 
outdegree of 1 or 0 due to the properties of the directed 
graphs. The final step in creating a graph is implementing 
the MATLAB built-in function “digraph” by using the two 
aforementioned vectors s and t. The output of “digraph” is a 
graph struct (structure) that is called G in Figure 3. The 
graph struct is a workspace output that includes all 
information required about the graph as node list, edge list, 
in and out degrees of each node, etc. 
 
Finding the proper partition. Next, the proper partition of 
the digraph is obtained by two MATLAB functions called 
“allcycles” and “findchains”. The “allcycles” function works 
on finding and saving all the closed paths in the graph 
structure by scanning the s and t vectors where the cycle is 
considered a chain of edges that starts and ends with the 
same vertex. Then, the “findchains” function starts from the 
output of “allcycles” function which are the cycles of the 
proper partition (CY). After that, the cycles are trimmed out 
of the graph leaving the remaining edges that form the 
chains. The extraction of the chains is done by getting all 
vertices that have indegree = 0. Then scanning the following 
vertices of each vertex with indegree = 0, if the outdegree of 
any of the following vertices is 0, this means a chain is 
located that include the starting vertex with indegree =0 and 
the located vertex with outdegree = 0. The contributed 
function “findchains” can distinguish the longest chain when 
chains intersect at a merge point by means of a function 
called “setdiff” with option ‘stable’ that trims the parts of 
chains that are repeated in a longer chain. Finally, the chains 
(CH) are sorted in descending order of their lengths by “sort” 
function. 
 
Finding the eigenvalues. The cycles and chains are 
forwarded to a new function called “jeig” that calculates the 
eigenvalues. The eigenvalues of the vertices associated to 
cycles are calculated for each cycle one by one. If the cycle 
has only one vertex, the eigenvalue of that vertex becomes 1. 
Otherwise, if the cycle has two or more vertices, one 

computes the primitive 
j

 root of unity is 
2

expj

j

i


 
  

 
 

  

where j  is the length of the cycle. Consequently, the 

eigenvalues associated to the vertices starting from the first 

vertex are 2, ,.......,    where  is the number of vertices 

in the cycle of a proper partition of the graph [9]. Hence, the 
eigenvalues are: 

2
exp 1h h

j j j

j

i
h     , h


 

 
    

 
 

(5) 

Finally, the eigenvalues of the vertices associated to chains 
are set to 0. 
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Finding the eigenvectors and generalized eigenvectors. 
The obtained eigenvalues are forwarded to the eigenvectors 
function called “jeigv” in order to calculate the modal matrix 
“Q ”. In this stage, four cases of eigenvectors are considered. 

The first case is that of eigenvectors associated with cycles 
vertices 

CYV . The eigenvectors of cycles vertices are 

calculated according to Eq. (4). For the first cycle of the 
graph, the number of vertices in the cycle is . Hence, the 
procedure followed in the MATLAB function “jeigv” is to 
reserve  columns in the empty modal matrix. Also, each 
column has  row locations associated with the cycle 
vertices. For example, a cycle c = {1, 2, 4}, =3, the first three 
columns in “ Q ” are reserved for this cycle and the row 

locations 1, 2 and 4 in each column are addressed. The 
MATLAB code “jeigv” addresses the vertices of cycles first; 
hence, the modal matrix is filled with eigenvectors of cycles 
vertices first, and the eigenvectors of chains vertices second. 
Before elaborating on the chains’ cases, the code runs chains 
in descending order in order to classify them according to 
the following three categories by employing conditional 
checks using “ismember” condition of MATLAB. The modal 
matrix is filled according to the order of the chains obtained 
in the proper partition. 
 
1. The second case (first case in chains) is that of 

eigenvectors of chains ending with terminal points 
1CHV . 

If the last vertex is a terminal point 
(Check1=ismember(last vertex, terminal points)=1), the 
chain is classified as ending with terminal. Assuming the 
length of this chain is , the modal matrix reserves 

columns for the eigenvectors of this chain. In each 
column, the location number of each vertex is given to the 
row of this column. For example, chain ch={11, 10, 3}, 
length = 3,  the row locations in the three columns are 
3, 10 and 11 as the chain is flipped.  Finally, the 
eigenvectors are equal 1 at these locations.  

2. The third case (second chain case) is the chain ending 
with merge point on a chain 2CHV . If the second check 

(Check2=ismember(last vertex, Merge points)=1), and 
the sub-check (Check21=ismember(last vertex, any 
chain)=1), then the chain is classified as a chain ending 
with a merge point on a chain. The procedure of Section 
2.2 is followed. Therefore, if the length of the chain is , 
the modal matrix will have a reservation for  columns. 
Each column has two values (1, -1) as illustrated in 
Section 2.2. 

3. The last case (third chain case) is the chain ending with 
merge point on a cycle 3CHV . If the second check 

(Check2=ismember(last vertex, Merge points)=1), and 

the sub-check (Check22=ismember(last vertex, any 
cycle)=1), then the chain is classified as a chain ending 
with a merge point on a cycle. In this case, two sub-cases 
are introduced. The first subcase is that the length of the 
chain  is less than the length of the merge cycle. Then, 
the cycle is considered as another chain, and the 
eigenvectors are calculated as illustrated in Section 2 
Also, the modal matrix will have new reservation for  
columns. Each column has two values (1, -1) associated to 
the calculated eigenvectors. The second subcase is the 
length of the chain  is equal or greater than the length of 
the merge cycle. The merge cycle is considered as another 
chain that repeats until reaching the length of the chain 

. For example, if  =5, and the merge cycle c = {3,6,10}, 
the merge cycle is modified to be a chain that equal 
{3,6,10,3,6} in order to calculate the eigenvectors as 
explained in Section 2. 

 
Figure 3 illustrates the flowchart of the contributed MATLAB 
toolbox in detail. The inputs to the toolbox are the starting 
and ending points of each edge of the digraph, s and t 
respectively. The outputs of the toolbox are the modal matrix 
“Q ” and the Jordan form “ J ”. The “jeigv” code treats all 

cycles’ and chains’ cases according to the explanation in [9]. 
The modal matrix is obtained at the bottom after the “jeigv” 
block. The following eigenvectors are computed: 

CYV (the 

eigenvectors pertaining to cycles), 
1CHV  (the generalized 

eigenvectors pertaining to chains ending with a terminal 
point), 

2CHV  (the generalized eigenvectors pertaining to 

chains having an end point on another chain) and 
3CHV  (the 

generalized eigenvectors pertaining to chains having an end 
point on a cycle). Hence 

1CHV , 
2CHV  and 

3CHV  are the 

generalized eigenvectors pertaining to chains ending on a 
merge point. Finally, the modal matrix Q  is generated and 

the Jordan blocks are obtained by the block before J in 

Figure 3. where adjacency(G) is the built-in MATLAB 
function that extracts the graph edge list from the graph 
struct in order to create an adjacency matrix of zeros and 
ones according to the relationship between all vertices in the 
extracted edge list table.  
The reason for developing such toolbox is that the built-in 
MATLAB code “jordan” lingers for square matrices of order 
between 40 and 60. The contributed toolbox and the 
MATLAB built-in function “jordan” are tested in a loop of 
matrix order [10:10:1000] by generating random digraphs. 
The random generation is done by the MATLAB function 
“randi”. It is found that the “jordan” function halts for matrix 
order of 40, 50 or 60 every time the test is performed. 
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Figure 3: Flowchart.

In order to assess the accuracy of the computational 
procedure, the adjacency matrix is computed according to 
Eq.(6). The absolute value of the difference between the 
computed adjacency matrix and the actual one is calculated 
elementwise by Eq.(7). Two measures of the error matrix E  
are computed; namely, the maximum error (defined as the 
maximum element) of Eq. code) (8) and the Frobenius error 
(defined as the Frobenius matrix norm) of Eq.(9). 

1

computed

A QJQ (6) 

actual computed E A A (7) 

max max(max( ))E  E (a MATLAB code) (8) 

2

1 1

m n

fro ij

i j

E E
 

  (9) 

 

3. Computational Results 
 

Aiming at finding a relation between the error measures 
given by code) (8) and (9) and some characterizing features 
of the graph, one starts by defining the cycles vertices (X) as 
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the number of vertices involved in all the cycles of the graph. 
Since a graph can be characterized by both X and the number 
of its cycles, one looks for any correlation between the error 
measures on one hand and X and the number of cycles in the 
graph on the other hand. Figure 4 depicts the results of two 
tests where parts a and b respectively portray the maximum 

and Frobenius error measures. A quick inspection shows that 
the correlation between the error measures and X is more 
pronounced than that between the error measures and the 
number of cycles. Moreover, the Frobenius error shows a 
stronger correlation with X than the maximum error does. 

 

(a) 

 
(b) 

Figure 4.  The error measures, the X and number of cycles versus matrix size (n) in test 1 (a) maximum error, (b) 

Frobenius error. 
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(a) 

 
(b) 

Figure 5. The error measures, the X and number of cycles versus matrix size (n) in test 2 (a) maximum error, (b) 

Frobenius error.

During performing the simulation, the following 
observations were recorded: 
1. X is not totally the main factor affecting the error 

measures. 
2. The longer the cycles, especially as an odd number, the 

greater the error. 
3. When the number of cycles is large while their lengths 

are very short (particularly 1, 2, 4 and 8), the error 
shrinks almost to zero. 

4. The presence of large imaginary parts in the modal 
matrix leads to large error. 

 

4. CONCLUSIONS 
 
Based on Cardon's approach[9], an experimental MATLAB 
toolbox is developed to construct the Jordan canonical form 
for a class of zero-one square matrices of order up to 1000, 
with the additional property that each column has at most 
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one nonzero element. The method is based on the creation 
and examination of a directed graph with the matrix under 
discussion as its adjacency matrix. each column has at most 
one nonzero element based on Cardon’s algorithm [9]. This 
investigation focuses primarily on computing the 
eigenvalues and generalized eigenvectors to construct the 
Jordan canonical form and modal matrix. The computation's 
accuracy is measured by calculating the difference between 
the given matrix and the developed one obtained by 
combining the Jordan form and the modal matrix. 
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