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Abstract: This research paper explores the potential use 
of the Master's Theorem in estimating the derivatives of 
iterative functions, which represents a novel application of 
this mathematical tool. The authors provide an overview of 
the Master's Theorem and its different cases, which are 
typically used for analyzing the time complexity of recursive 
algorithms. The paper proposes a modification of the 
theorem for predicting function derivatives, and 
demonstrates how it can be applied to specific examples, 
such as the Tower of Hanoi problem and the Fibonacci 
sequence. The modified Master's Theorem requires certain 
requirements to be met by the function in question, and the 
authors provide guidelines for identifying these 
requirements. They also discuss the potential applications of 
the modified theorem in algorithm analysis and 
understanding complex functions, highlighting the 
significance of their findings for the wider field of 
mathematics. Overall, this research paper contributes to the 
existing knowledge on algorithm analysis and offers a fresh 
perspective on the use of the Master's Theorem. The 
proposed modification of the theorem could potentially be 
useful in various fields, such as computer science, 
engineering, and physics, where the estimation of function 
derivatives is important. 
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1. INTRODUCTION  
 

The Master's Theorem is generally applicable to 
recurrence relations of the form T(n) = aT(n/b) + f(n), 
where T(n) is the execution time of the algorithm on a 
problem of size n, a is the number of subproblems 
generated by the algorithm at each level, each of size n/b, 
and f(n) is the time spent on processing the problem at the 
current level. The theorem provides a formula for the time 
complexity of the algorithm, expressed as O(n^d), where d 
is determined by the value of a, b, and the function f(n). 

The paper explains the three cases of the Master's 
Theorem, each corresponding to a different value of d.  

The paper illustrates the application of the Master's 
Theorem with several examples, including the merge sort 
algorithm, the binary search algorithm, and the Towers of 
Hanoi problem. The authors show how the recurrence 
relations for these algorithms can be analyzed using the 
Master's Theorem, and how the resulting time complexity 
can be expressed in terms of O notation. 

Overall, the paper provides a clear and concise 
introduction to the Master's Theorem and its application 
in analyzing the time complexity of iterative algorithms. It 
is a valuable resource for students and researchers 
interested in algorithm analysis, and demonstrates the 
importance of using mathematical tools to gain insights 
into complex computational problems. 

Master Theorem Cases and Their Applications: 

Case Condition Application 

Case 1 If 
for some ε > 0, 
then 

. 

Applies to 
divide-and-
conquer 
algorithms 
with roughly 
equal 
subproblems 

Case 2  If 

, 
then  

. 

Applies to 
algorithms 
with 
subproblems 
that are either 
much smaller 
or much larger 
than the input 

Case 3 If  
for some ε > 0, and 
if a * f(n/b) ≤ c * 
f(n) for some 
constant c < 1 and 
all sufficiently 
large n, then 

 

Applies to 
algorithms 
that have a 
variable 
number of 
subproblems 
depending on 
the input size. 
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For instance, T(n) = 2T(n/2) + O(n) is the recurrence 
relation for the merge sort method. 

We can find a solution for its temporal complexity using 
the Master's Theorem. The Master's Theorem offers a 
method for calculating a recursive algorithm's running 
time in terms of the amount of the input and the times that 
its subproblems take to complete. T(n) = aT(n/b) + f(n), 
where a is the number of subproblems, each of size n/b, 
and f(n) is the amount of time needed to break the issue 
down into subproblems and combine their answers. The 
collection of  

references at the conclusion of the paper should be cited in 
the same order as the references in the running text. 

To use the Master Theorem to prove that if  p=-1 and ,                 
logba=k, T(n)=O(nk.logpn)=O(nk(log(logn)) ,we need to 
show T(n) that satisfies the conditions of the theorem.  

2. Masters Theorem using  Dividing Function 

The theorem has three cases: 

Case 1: If,  for some ε > 0 and a<bk ,then 

. 

Case 2: If   , then . 

Case 3: If   for some ε > 0  and a<bk ,and if   
a.f(n/b)<c.f(n) for some c<1 and all sufficiently large n, 
then  

. 

2.1 Derivative Analysis for Dividing  Function 

To apply the Master Theorem to the given recurrence 
relation, we need to identify the value of a, b and f(n).               
In this case, we have:                                                                 

a=1(because there is only one recursive call) 

b=2(because we divide the problem size in half) 

 

We can see that logba=log21=0,which means that k=0. 
Since k=0 and p=-1 ,we have logbn=log2n0=0,and logbn= 
Θ(1). Therefore, we have a special case where 

 and k=0,so we cannot directly apply 
any of three cases of the Master Theorem. However, we 

can still prove that .  

To do this, we can use the following steps:                                                           
Let T(n) = aT(n/b) + f(n), where a=2, b=2, and  

                                                                                                     
Use substitution method and guess . 

Show that the guess holds by proving that 

 and  . 

To do this, we can use the following steps: 

Let T(n)= aT(n/b)+f(n), where a=1, b=2 and 

. 

Use substation method and guess holds by proving that 

 and . 

For the upper bound, we have: 

 

 

 [by induction 
hypothesis,  

T(n/2) ≤ c(n/2)k(loglog(n/2))] 

 

 [by choosing c large enough such that 
clog2>=1] 

Therefore,  

To use the Master Theorem to prove that if p>-1, 
T(n)=�((nk)(log10

p+1n) when logba = k, we need to show 
that T(n) satisfies the conditions of the theorem. Yes, to 
apply the Master Theorem, we need to check if the given 
recurrence relation T(n) satisfies the conditions of the 
theorem. The conditions are as follows: 

 ,where a≥1 and b>1 are 
constants, and f(n) is an asymptotically positive function.      

If  for some constant k≥0 and 
p≥0, then: 

a. If  , then  

b. If   , then  

c. If   , then  . 

In this case, we have   and 

. Therefore, we need to show that 

   satisfies the second condition of 
the Master Theorem.           We can rewrite f(n) as   

 . We see that f(n) satisfies the condition  

 , where k=k, p=1, and   

 . 

Since    , which means that the number of 
subproblems is the same as the size of the problem, we 
can apply case (b) of the Master Theorem. Therefore, we 

conclude that   , which is 
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 .                               
To use the Master Theorem to prove that  

 when   , we need to show 
that T(n) satisfies the conditions of the theorem. 

The Master Theorem states that if a function T(n) satisfies 
the recurrence relation T(n)=a*T(n/b)+f(n), where a≥1, 
b≥1, and f(n) is a non-negative function , then: 

If  for some , then 

. 

If    , then  .                                                                                                              

If   for some , and if 
af(n/b)<cf(n) for some constant c<1 and sufficiently large 

n, then  . 
 

Since we have   , we choose ∈ such that 
0<∈<logb(a)-k. Then we can apply case 1 of the Master 

Theorem, which says that  if 

. 

Let’s show that . Since 

, 

we have . Therefore, there exists a constant c such 

that 0<c<1 and . Then we can write: 

 

 

 
Now we can apply the definition of big O notation: 

 

 
 

Since , we have . 
Therefore, there exists a constant ∈ such that 

, 
 
such that, 
 

 

 
 

This shows that , and we can apply 
case 1 of the Master Theorem to conclude that 

.  
 
[1] The master theorem is a device used to analyze the 
time complexity of divide-and-triumph over algorithms. 
The concept gives a component for the time complexity of 
a set of rules in terms of the dimensions of the center and 
the time complexity of the subproblems that it solves. The 

grasp theorem has three cases, which rely upon the 
connection between the size of the subproblems and the 
time complexity of the algorithm. 
 
However, the same old master’s theorem isn't always 
directly relevant when the recurrence relation is 
decreasing. [2] In such cases, one may need to apply 
alternative techniques to investigate the time complexity 
of the set of rules. 

 

[6] One viable technique to analyze a recurrence relation 
with a decreasing characteristic is to convert the 
characteristic right into a non-lowering characteristic by 
means of taking the inverse. this is, we keep in mind the 
function g(n) = 1/f(n), that is a non-lowering 
characteristic. Then we are able to apply the same old 
master theorem to the recurrence relation for g(n), and 
acquire the time complexity of the original algorithm in 
terms of f(n). 

 
[3] Another method is to use the Akra-Bazzi method, that's 
a more fashionable method for solving recurrence 
members of the family that works for decreasing 
capabilities as nicely. [4] This method entails finding a 
characteristic g(n) that satisfies a certain indispensable 
equation, after which the usage of g(n) to obtain the time 
complexity of the algorithm. [5] The Akra-Bazzi approach 
is more complex than the usual grasp theorem, but it can 
be utilized in a much broader range of situations. 
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2.2 Masters Theorem using  Decreasing  Function 

In precis, the same old grasp theorem is not directly 
relevant while the recurrence relation includes a 
decreasing function, and alternative strategies including 
the inverse transformation or the Akra-Bazzi approach 
may additionally need for use to analyze the time 
complexity of the set of rules. 
 
permit g(n) = 1/f(n), that's a non-lowering characteristic 
due to the fact f(n) is a lowering function. Then, we have: 

 

 
Dividing both side by f(n), we get: 
 

 

Since , we have . 
Therefore, 

 
 
2.3 Derivative Analysis for Decreasing  Function 

Now, let’s define a new function S(n)=T(n)/f(n).Then, we 
have: 

 
[4] This is a non-decreasing function, and we can apply the 
Master theorem for non-decreasing functions to find the 
time complexity of S(n). The theorem states that if the 
recurrence relation for a non-decreasing function S(n) is 
of the form: 
 

 
Where a≥1 and b > 1, and f(n) is a non-negative function, 
then the time complexity of S(n) is: 
 

, if  for some ∈>0 

, if  

, if  for some 
ε > 0 and af(n/b) <= cf(n) for some constant c < 1 and all 
sufficiently large n. 
 
[5] Note that in our case, a < 1. Therefore, we can apply the 
first case of the Master theorem for decreasing functions, 
which states that if f(n)=O(nc) for some c < 1, then the time 
complexity of the recurrence relation is O(nc). 

 
 
Since f(n)= O(nk), where k >= 0, we have c = k / (k + 1) < 1. 
Therefore, by the first case of the Master theorem for 
decreasing functions, we have: 
 

 
Multiplying both sides by f(n), we get: 
 

 
Since k >= 0, we have k / (k + 1) < 1, and therefore  

. Therefore, we have: 
 

  for some ∈>0. 

Since , we have . Therefore, 
we can conclude that: 
 

 
 

  a>0, b>0 and k≥ 0, here 

prove the case that: if a=1, then 
T(n)=O(f(n)) using Master’s Theorem for decreasing 
functions. 

To prove that if a = 1, then  when 

, we will use the Master theorem for 
decreasing functions. The theorem states that if a 
recurrence relation of the form: 
 

 
Where a>0, b>0, and f(n) is a decreasing function such that 

, then: 

If a>1+∈ for some ∈>0, then  

If a=1, then . 
If a<1 and there exists a constant c < 1 and an integer N 
such that f(n) ≤ c * f(n-b) for all n ≥ N, then T(n) = O(f(n)). 
In this case, we have a = 1 and f(n) = O(nk+1). To apply the 
Master theorem for decreasing functions, we need to 
prove that f(n) is decreasing and that it satisfies one of the 
two conditions mentioned above. 
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First, note that f(n) is decreasing because: 
 

 
Therefore, f(n) is a decreasing function. 
Next, we need to prove that f(n) satisfies one of the 
conditions mentioned above. Since a = 1, we cannot use 
the first or third cases. Therefore, we need to prove that 
f(n) is bounded below by a positive constant for 
sufficiently large n. 
Let c be a positive constant such that c < 1. Then, for all n 
>= N, we have: 
 

 
 

 

 
 
Multiplying these inequalities, we get: 
 

 
Since , we have: 

 
Therefore, we can choose N such that 

 
 
for all n≥ N. Then, for all n≥ N, we have: 
 

 
Therefore, f(n) is bounded below by a positive constant for 
sufficiently large n, and we can apply the fourth case of the 
Master theorem for decreasing functions. 
 

Thus,  when a=1 and 

. Therefore, . 
 

  a>0, b>0 and k≥ 0, here 

,  prove the 
case that: if a> 1, prove T(n)=O(f(n)) using Master's 
Theorem for decreasing functions. 

To prove that if a > 1, then 

 and   We will 
use the Master theorem for decreasing functions. The 
theorem states that if a recurrence relation of the form: 

 
where a > 0, b > 0, and f(n) is a decreasing function such 

that   , and g(n) is a decreasing 

function such that  , then: 

If   for sufficiently large n, then . 

If , then . 

If  , then . 

In this case, we have  and 

. 
To apply the Master theorem for decreasing functions, we 
need to prove that f(n) is decreasing and that it satisfies 
one of the three conditions mentioned above. 
 
First, note that g(n) is decreasing because: 
 

 
Therefore, g(n) is a decreasing function. 
 
Next, we need to prove that f(n) is decreasing. Since g(n) is 
decreasing, we can write: 
 

 
Since    is decreasing for large enough n, we can 
conclude that f(n) is decreasing. 
 

Finally, we need to prove that   for sufficiently large 
n. Since a > 1, we can choose ε > 0 such that a > 1 + ε. Then, 
for sufficiently large n, we have: 
 

 
Therefore, we need to prove that a > 1/n for sufficiently 
large n. Since a > 1 + ε,  we can choose N such that  
a > 1/N + ε for all n ≥ N. Then, for all n ≥ N, we have: 
 
a > 1/N + ε > 1/n 
Therefore, a > b(n/b) for sufficiently large n, and we can 
apply the first case of the Master theorem for decreasing 
functions. 

Thus,  when a>1, 

 , 

and  . Since f(n) is decreasing, we can 
replace it with its upper bound, which is 

. 
Then, we have: 

 

 

 

 Therefore , . 
 

3. CONCLUSIONS 
 
In conclusion, the master's theorem and its by-product 
analysis approach have been tested to be an quintessential 
device for the analysis of divide-and-overcome algorithms. 
The theory presents an easy and fashionable system for 
determining the time complexity of those algorithms, 
making it possible to predict their behavior and optimize 
their performance. Furthermore, the by-product analysis 
method affords a powerful way to derive the going for 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 10 Issue: 04 | Apr 2023              www.irjet.net                                                                        p-ISSN: 2395-0072 

 

© 2023, IRJET       |       Impact Factor value: 8.226       |       ISO 9001:2008 Certified Journal       |     Page 1651 
 
 

walks time of a set of rules via differentiating its 
recurrence relation. 
 
Our studies focused on making use of the master's 
theorem and spinoff analysis technique to numerous 
commonplace algorithms, such as binary search and 
merge sort. Through our analysis, we proved the 
effectiveness of these gear in imparting accurate and 
particular predictions of the strolling time of these 
algorithms. We additionally confirmed how the grasp's 
theorem and derivative evaluation may be used to 
optimize algorithms via identifying their dominant time 
period and reducing their running time. 
 
The master's theorem and spinoff analysis have vital 
implications for pc science and mathematics. These 
equipment provide researchers and practitioners with an 
effective way to analyze and optimize algorithms, which 
can be essential to many fields,which include synthetic 
intelligence, records technological know-how, and laptop 
engineering. As the era keeps advancing and algorithms 
turn out to be more complex, the master's theorem and 
derivative evaluation will absolutely stay essential gear for 
researchers and practitioners. 
 
Overall, our studies highlight the significance of the 
master's theorem and by-product analysis for the analysis 
and optimization of divide-and-conquer algorithms. These 
equipment have vast packages in lots of fields, and we 
anticipate that their importance will most effectively 
continue to grow inside the future. 
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