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Abstract - The full width engagement impact between the 
front of a test vehicle and a fixed, rigid, massive barrier 
represents a common, if not the most common, collision 
configuration within the context of controlled testing 
conducted for safety standard compliance or assessment 
purposes.  In cases in which the barrier is instrumented and 
with the instrumentation specifically including a load cell 
array comprised of a sufficient number of individual load cells 
aligned along the principle test direction, the structural 
response of the test vehicle during the impact can be 
characterized within the context of a single degree of freedom, 
ubiquitously collinear modeling approach without reliance 
upon any test vehicle affixed instrumentation.  This 
characterization, based upon the time-parametric force 
deflection response, is generally nonlinear for both the closure 
and separation phases of the collision.  Investigated in the 
subject work, for the totality of each phase, is the use of 
nonlinear power law formulations for modeling the force-
deflection response.  A criterion is developed, based upon the 
peak deflection, peak collision force and internal work 
absorbed in regards to a set of closure phase responses for 
which such a modeling approach is appropriate.  Three 
distinct power law models are developed and presented in 
regards to the modeling of separation phase responses.  These 
models are compared to extant, linear, phasic response 
models. 

Key Words:  Collision testing, nonlinear modeling, power 
law models 

1.INTRODUCTION 

One may define a collision as the physical phenomenon that 
occurs when two or more distinct objects (or two or more 
distinct aspects of the same object) attempt to 
simultaneously occupy the same region of physical space.  
The kinematic and kinetic responses that arise from the 
physical phenomenon in question define a set of metrics that 
are the most objective when it comes to representing the 
severity of the event.  The accurate quantification of these 
metrics is a typical and common component of the 
engineering endeavor of vehicular collision reconstruction.  
The phrase vehicular collision reconstruction, rather than 
accident reconstruction, is used herein due to the basic fact 
that that the physical phenomenon in question and the 
framework utilized for understanding and modeling the 
physical phenomenon in question (i.e. the episteme) is 
entirely intransient to legal precepts of human intention.    

Within the context of vehicular collision reconstruction, 
advances in the composite field of vehicle electronics 
coupled with their broad adaptation has resulted in the 
establishment of a new paradigm.  This paradigm is one of 
quantifying certain collision severity metrics based upon 
retrieval of data, from the vehicular collision partner itself, 
which in turn was generated during the collision and 
subsequently stored.  Certain situations, including but not 
limited to, cases involving collision partners for which such 
system(s) were not included at the time of manufacture, the 
lack of coverage for data extraction using aftermarket, 
commercially available hardware and software systems, data 
loss, lack of vehicle availability or any combination of the 
aforementioned results in the necessity for relying upon 
other methods for estimating the salient quantifiable 
collision severity metrics.  One class of such methods 
involves the analysis of evidence generated during a collision 
event, the relatively immediate temporal period surrounding 
a collision event or both.  An example is the deposition of tire 
mark evidence, on a roadway, secondary to vehicle operator 
mediated braking, steering or both.  Cases in which such 
evidence is present, antecedent to a collision event, 
specifically due to operator mediated brake application, 
however, has become an increasing rarity secondary to the 
near ubiquitous inclusion of anti-lock brakes as a standard 
vehicle feature.  In most cases, the salient evidence 
generated is that which occurred during a collision and 
consists of the residual damage present to the vehicular 
collision partners.   

The importance of residual damage analysis based methods 
for quantifying collision severity metrics cannot be 
understated.  In the United States, the National Center for 
Statistics and Analysis (NCSA), of the National Highway 
Traffic Safety Administration (NHTSA), has been involved in 
the collection of motor vehicle traffic collision data through 
the National Automotive Sampling System/Crashworthiness 
Data System (NASS/CDS) for over forty years.  For any given 
traffic collision subject to such an investigation, inclusion 
within the NASS/CDS requires the determination and coding 
of the collision phase velocity change for the salient 
vehicular collision partners.  In this regard, the collision 
phase velocity change (v) is the metric by which collision 
severity is quantified and with such determinations 
predicated upon reconstruction of the collision event.  As of 
2007, the vast majority of coded velocity changes within the 
NASS/CDS were based upon residual damage analysis [1].  
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The phrase, residual damage, which was used in the two 
preceding paragraphs, requires a working definition.  As 
used in this work, the phrase refers to the quantifiable 
dimensions of the permanent deformation present to a 
vehicular collision partner and with such deformation 
arising from a collision event.  The reasoning behind using 
residual damage as the starting point in quantifying collision 
severity, is elementary.   As the collective independent 
variable, in a reconstructive analysis, residual damage does 
not require any measurements during the collision itself.  
Furthermore, the dimensions of a vehicular collision partner, 
in the post-collision configuration, can readily be 
ascertained, even well after the incipient collision event, and 
through a number of different means.  Dimensional data 
regarding an undeformed reference configuration is readily 
available for virtually every single production vehicle.  The 
dimensional differences between the reference and post-
collision configurations define the residual damage profile.  

The process of using a given residual damage profile, for a 
given vehicular collision partner, to quantify the severity of 
the collision that produced the residual damage profile, 
clearly requires mathematical modeling.  In a general sense, 
a mathematical model converts a set of inputs (the 
independent variables) into a set of desired outputs (the 
dependent variables) by means of its form and generally 
with the use of model specific parameters.  These 
parameters, furthermore, generally require a priori 
quantification prior to model utilization for a given case of 
interest.  Advancing from this general statement to one of 
specificity in regards to the residual damage analysis for 
vehicular collision reconstruction, there are two empirically-
based and interrelated mathematical models that have 
enjoyed long-standing utilization.  Both models are 
intrinsically uniaxial and not time parametric.  Based upon 
controlled collision testing, in a collinear configuration, in 
which a fixed, rigid, massive barrier (FRMB) was impacted, 
in each test, by the front of a test vehicle, in a full frontal 
width engagement impact, Campbell [2-3] postulated a 
linear relationship between the speed of impact and the 
uniaxial depth of residual deformation (i.e. crush) present to 
the test vehicle.  Campbell generalized this finding by 
defining the equivalent barrier speed (EBS) as ‘a vehicle 
velocity at which the kinetic energy of the vehicle would 
equal the energy absorbed in plastic deformation’ and by 
indicating that the EBS was a linear function of the uniaxial 
residual damage depth. 

 0 1EBS b b c   (1) 

In equation (1), the model parameters b0 and b1 are typically 
referred to as the Campbell model coefficients.  The term b0 
represents the maximum EBS that results in a zero valued 
residual damage depth (c) and the term b1 is the slope of the 
linear relationship.  The second empirical relationship, 
postulated by Campbell [3] but most commonly associated 
with McHenry [4] was of a linear response in the collision 

force magnitude, normalized per unit length of direct contact 
damage, and the uniaxial depth of residual damage. 

 
F

A Bc
L
   (2) 

In equation (2), |F| is the magnitude of the collision force, L 
is the length of direct contact damage, A is the maximum 
normalized collision force that results in a zero valued 
residual damage depth and B is the slope of the linear 
relationship.  The length of direct contact damage is taken as 
being time invariant with respect to the collision (i.e., the 
value for L is taken as being the same in the reference and 
residual damage configurations).  The model parameters A 
and B are commonly referred to as the CRASH3 (the 
acronym deriving from the third iteration of the Calspan 
Reconstruction of Accident Speeds on the Highway model) 
coefficients.  The parameters from both models are 
collectively referred to as stiffness coefficients.   

It is relevant, at this point in the presentation, to note the 
fact that collisions are not instantaneous events (this does 
not preclude the ability to accurately model collisions as 
such).  For the vast majority of collisions of the type of 
interest, excluding certain sideswipe type collisions, the 
finite collision duration can be divided into two phases.  The 
closure phase initiates at the first point in time that the 
collision partners seek to occupy the same region of physical 
space and terminates at the point in time in which the 
collision partners achieve a common velocity.  The second 
phase, the separation phase, initiates contemporaneously 
with the terminus of the closure phase and terminates at the 
first point in time at which the collision force magnitude 
reaches zero.  The collision force is internal to the collision 
partner system.  During closure, the work done by the 
collision force is absorbed (IWA) and during separation, the 
work done by the collision force is recovered (IWR).  The 
difference between the IWA and the IWR is the internal work 
dissipated (IWD).   

These definitions are of import to the subject work.  
Equations (1) and (2) both  relate an independent variable 
that is a terminus of separation variable to a dependent 
variable that is a terminus of closure variable (one may write 
the second relationship on an average basis, however, such 
would not be correct in regards to the work-energy 
relationship discussed subsequently).  The CRASH3 model 
was explicitly developed for the closure phase.  The lack of 
inclusion of a separation phase is functionally equivalent to 
treating the IWR, the coefficient of restitution (the ratio of 
the separation velocity to the closing velocity) and the 
separation velocity as being zero valued.   The kinetic energy 
associated with the EBS from equation (1) can be obtained 
simply as: 

  
22

0 1

1
mEBS b b c

2
   (3) 
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Equation (2) has been traditionally treated as if it were a 
time parametric force-deflection response.  Double 
integration of this equation over L and c has been taken as 
producing an energy that is equal to that of equation (3).  
The integrated result is a quadratic in c, which means that 
the equality holds when the polynomial coefficients for each 
order of c (i.e., c0, c1 and c2) are equal.  This approach allows 
for a set of equations that relate the parameters of the two 
models and for which one need only estimate a value for b0, 
for a given value of c, L and EBS, in order to quantify the 
remaining three parameters. 

The modeling of collisions in which the collision partners 
‘stick together’ with no recovery of IWA may be appropriate 
for certain impact situations.  However, even for the FRMB 
impact case described previously, the case of a test vehicle 
coming to rest against the barrier face is not one that is seen 
empirically.  From the mathematical modeling perspective, 
for the closure phase of a collinear impact, the modeling of 
each deformable collision partner as a single degree of 
freedom (SDOF) model comprised of a single lumped mass 
coupled to a single, linear, relative displacement element (i.e. 
linear spring) can readily be found in the early literature [5] 
and as part of the formative basis of the CRASH3 damage 
analysis algorithm [4].   

The question of whether or not a dynamic model containing 
both the closure and separation phases could be developed 
that (a) could account for the ordinate offsets of the 
empirical models and (b) maintain the linearity of the 
empirical models for collisions resulting in non-zero valued 
residual damage depths was previously addressed by the 
subject author [6].  Three findings from the cited work, for 
an affirmative response, are salient.  The first finding was 
that the closure phase force-deflection response had to be 
uniformly and ubiquitously linear.  The second finding was 
that an elastic limit, defined as a specific value of |F|, EBS or 
IWA was needed.  Collisions at a severity up to and including 
the elastic limit values resulted in a non-linear separation 
phase response that terminated at the origin of the force-
deflection curve.  For such collisions, the separation phase 
response could not be linear as the only linear path was a 
reverse traversal of the linear closure phase response, 
thereby producing full recovery of the IWA (equivalently, a 
separation velocity magnitude being equal to the closing 
velocity magnitude and a unity valued coefficient of 
restitution).  The non-linear response allowed for both a 
zero valued residual damage depth and a coefficient of 
restitution with less than unity valuation.  The third finding 
was that for collisions exceeding the elastic limit, the 
separation phase had to be uniformly and ubiquitously linear 
with a force-deflection response slope of greater magnitude 
than the closure phase response.  Any nonlinearity or 
multilinearity in the response for collisions exceeding the 
elastic limit were patently manifest in the relationship 
between any terminus of closure phase parameters and the 
depth of residual damage. 

The linear model for the separation phase, as described 
above, however, tends to be problematic when it comes to 
the FRMB impact case under consideration due to the fact 
that it results in an overestimation of the IWR.  One approach 
to deal with this issue, as found in the literature, has been to 
interpose a modeled path, for the force-deflection response, 
from the start of the separation phase, having infinite slope, 
and terminating at a normalized force value such that the 
subsequent finite slope response produces an IWR that 
matches the value determined from testing [7-10].  In the 
view of the subject author, this approach is unjustified, even 
as a modeled response.  While it produces linearity in 
regards to the residual damage relationships and matches 
the IWR, the modeling approach requires a time parametric 
drop in force magnitude, from peak value, while the time 
parametric deflection remains at peak value.  There is no 
physical phenomenon that would serve as basis for this 
requirement. 

Returning to the scope of residual damage based models, it 
should be noted that other models have been proposed.  
Other, linear, models include a constant force model [7], a 
saturation force model (finite linear slope followed by zero 
slope region) [7] and a bilinear model [7, 11].  A non-linear 
power law model has also been proposed [12].  It is 
important to note that these models retain the non-time 
parametric nature of the original residual damage based 
models. 

The non-linear power law model, as a dynamic model, has 
been explored previously, by the author, for modeling the 
closure phase [13] as well as the separation phase [14], for 
the FRMB impacts of interest.  The objective of the subject 
work is the further exploration of this modeling approach 
within the FRMB impact context.  Two points regarding the 
choice of this context are worthy of note.  The first, being 
rather obvious, is that controlled collision testing provides 
one of the most comprehensive sources of data when it 
comes to quantifying model parameters.  Secondly, the 
subject FRMB impact context is one that is incumbent in  
testing conducted for United States (US) Federal Motor 
Vehicle Safety Standard (FMVSS) 208D frontal impact 
compliance requirements, US high-speed frontal impact New 
Car Assessment Program (NCAP) testing and for testing 
conducted for research purposes.  Collectively, testing of this 
type represents a significant component of all testing 
conducted by various contracted groups, on behalf of 
NHTSA.  

2.THEORY 

Within the context of understanding a given physical 
phenomenon of interest, it can readily be stated that a 
purpose of employing mathematical modeling is to engender 
tractability.  This, in turn, consists of (a) defining a set of 
variables that serve as inputs, (b) defining a set of variables 
that serve as outputs and (c) defining the operative 
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relationships between these variables.  There is generally a 
correlation between increasing levels of model complexity 
and the ability for modeling more aspects of the 
phenomenon, modeling a given aspect to a greater level of 
detail or both.  The downside is that more complex models 
typically involve additional parameters and require 
additional data when compared to simpler models.  Finally, it 
should also be noted that great care must be taken in 
employing models for situations that are beyond the 
strictures of the model.   

With this caveat established, we can consider the graphical 
depiction of a collinear collision between two collision 
partners as shown in Figure 1.  Because the problem is 
formulated as a collinear impact in R1 for the entirety of the 
collision event, the single axis of the inertial frame of 
reference, X, is aligned with the single axis, x1 and x2, of each 
collision partner for all times of interest.  This formulation, in 
and of itself, properly references vectors in each body frame 
to the inertial frame of reference.  Equivalently, this can also 
be stated as the direction cosine matrix (DCM) that 
transforms vector components from each body frame to the 
inertial frame of reference is time invariant as the identity 
matrix (this also holds for the inverse transform).   

    
1 2

G G
B B 3R t I R t I t    (4) 

This does not hold for the case of general planar motion or 
general spatial motion.   

Each collision partner is modeled as a single lumped mass 
coupled to a massless force carrying member.  The latter 
represents the modeled structural properties, for the 
impacted region, for each collision partner.  Because the 
spatial dimension of the problem is one, each collision 
partner has a single degree of freedom, which is translational 
along the X-axis.  This single degree of freedom is 
parameterized by translational displacement and is denoted 
as u1(t) for the first collision partner and u2(t) for the second 
collision partner.  We seek to define the modeled structural 
response characteristics of each collision partner, 
independently, rather than in the effective sense.  This 
results in use of a massless node, representing the common 
collision interface, with displacement uIV(t). 

 

Fig -1: Introductory collision model  

We define the deflection for each collision partner as the 
relative displacement between the center of mass of the 
same and the common collision interface.  This is a direct 
measure of the dimensional change experienced by the 
massless element for each collision partner. 

 
     
     

1 1 IV
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t t t

t t t

 
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u u

u u




 (5) 

This rather simple model may be reduced even further due 
to the modeled nature of the FRMB.  Because the FRMB is 
fixed, it experiences no displacement during the collision 
event.  Because the FRMB is rigid, it experiences no 
deflection during the collision event.  Finally, because the 
barrier face is the common collision interface, the 
displacement of the same is zero.  The two equations under 
(5) reduce to one singular operative equation for this case. 

    1 1t tu  (6) 

For this case, the displacement experienced by the vehicle’s 
center of mass, during the collision, equals the structural 
deflection experienced by the vehicle.  This does not hold if 
the opposing collision partner is deformable.  References in 
the literature and elsewhere to phrases such as ‘force-
displacement response,’ when referencing the force-
deflection response, are only correct when equation (6) 
holds. 

There are a number of statements that can readily be made 
without crystalizing the form of the force-deflection model.  
The application of Newton’s second law of motion to the 
vehicle yields the general form of the equation of motion for 
the test vehicle. 

    1 1m t t u F  (7) 

Where m1 is the mass of the test vehicle, F(t) is the time 
varying collision force (the sole force considered during the 
collision and internal to the two collision partner system)  
and the standard overdot notation is employed for 
representing simple time derivatives.  When the FRMB is a 
load-cell barrier in which each load cell measures force 
axially, the collision force can be directly obtained by 
summing, at each point in time, the force measured by each 
load cell.  This holds for the model because of the time 
invariant orientation noted previously and the treatment of 
the barrier as being rigid.  The time varying force on the test 
vehicle is equal in magnitude but opposite in direction by 
Newton’s third law.  The second statement is that the 
equations for the IWA and the IWR for the two collision 
partner system [15] reduce by considering the mass of the 
FRMB in the limit. 

 
2

2 lim 21 2
c 1 cm

1 2

m m1 1
IWA IWA m

2 m m 2
  


v v  (8) 

m1 m2 

u1(t) u2(t) uIV(t) 
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2

2 lim 21 2
s 1 sm

1 2

m m1 1
IWR IWR m

2 m m 2
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
v v  (9) 

Where vc is the closing velocity and vs is the separation 
velocity, which are defined as: 

        c 1 o 2 o 1 o 1 ot t t t    v u u u 0 u  (10) 

        s 1 s 2 s 1 s 1 st t t t    v u u u 0 u  (11)3 

In equation (10), the time value t = to denotes the time at 
which the closure phase initiates.  The closure phase 
terminates at t = tc.  For this collision configuration, a 
common velocity is reached, for the collision partners, at the 
terminus of closure.  Clearly, this common velocity, vcom, is 
equal to zero due to the aforementioned modeled properties 
of the FRMB.  In equation (11), the time value t = ts denotes 
the time at which the separation phase terminates.  In both 
equations the velocity the FRMB is zero, thereby leading to 
the reduction shown to the right of the last equality in each 
equation.  The relationships shown in equations (7) - (11) 
are derived without any presumption regarding the nature 
or form of the force-deflection response of the test vehicle 
and hold regardless of the nature or form of the force-
deflection response of the test vehicle.    

We now proceed with the consideration of specific force-
deflection models.  The linear model, serving as comparison, 
for the subject nonlinear power law model, requires review. 

2.1 Linear closure phase force-deflection model 
 
The linear model derives its name as a result of the collision 
force being modelled as a linear function of the deflection. 

      1 1t k t k t F u  (12) 

The form to the right of the final equality in this equation is 
based upon equation (6).  Substitution of equation (12) into 
equation (7) followed by algebraic rearrangement leads to 
the operative second order linear differential equation of 
motion for the linear closure phase model. 

    1 1 1m t k t u u 0  (13) 

For this model, the length of the massless element, at to = 0 is 
taken as being equal to the reference length of the element 
(i.e. the length at which the element carries zero force).  This 
allows for an initial condition of u1(0) = u1o = 0.  The other 
initial condition is of a finite, non-zero, initial velocity, v1(0) 
= v1o, for the test vehicle.  The time domain kinematic 
solutions for the closure phase, for this model, are [14]: 

    1
1 1ot sin t  u v  (14) 

    1 1ot cos t u v  (15) 

    1 1ot sin t   u v  (16) 

Where the closure phase circular frequency, , is equal to 
the real root of (k/m1)0.5.  The time at which closure 
terminates is determinable from equation (15) and by 
knowing that the velocity of the test vehicle, at that point, is 
the common velocity, which is zero.  Because the initial 
velocity is known to be non-zero valued, the equation holds 
when the cosine term is zero valued.  Because the cosine 
function is periodic, it is the first solution that is used.  This 
leads to a solution of tc = /(2).  Substitution of this result 
into equation (14) leads to a terminus of closure 
displacement and deflection of u1(tc) = u1c = 1(tc) = 1c = 
v1o-1.  Similarly, the terminus of closure acceleration is 
determinable as -v1o.  We may also show that the model is 
linear by multiplying the acceleration by the mass of the test 
vehicle and dividing by the deflection. 

 
 

 

 

 
1 1o 2

1 11
1 11o

t m sin t k
m m k

t msin t

  
    

 

F v

v
 (17) 

The modeled IWA during closure can be determined by 
integrating the dot product of the collision force and the 
differential of the deflection. 

     
1c

2
1 1 1c

1
IWA t d t k

2
  

0

F


    (18) 

For any given collision test, the terms m1, v1o and the IWA, as 
per equation (8) are known.  The value of tc can be 
determined from equation (7) by using the total barrier 
force to first solve for the discrete acceleration-time history, 
followed by numerical integration to determine the discrete 
velocity-time history and then determining the time at which 
zero velocity is reached.  The discrete displacement-time 
history can be determined by numerical integration of the 
discrete velocity-time history.  The terminus of closure 
displacement (here equal to deflection), acceleration and 
force values can then be determined by simply the noting the 
value at t = tc. Thus far, none of the values noted rely upon a 
model for the force deflection response.  When we consider 
the linear closure phase model, we can readily note that the 
system is overdetermined once the previously listed terms 
are known.  There are a number of solution approaches that 
can be employed. 

1. Use the measured value of 1c and solve for  using  = 
v1o/1c.  Then solve for k using k = m1/2.  Solve for the 
modeled value of Fc using Fc = k1c.  Solve for the 
modeled value of tc using tc = /(2). 

2. Use the measured value of the force Fc to solve for the 
acceleration at the terminus of closure.  Solve for the 
circular frequency by dividing the terminus of closure 
acceleration by -v1o.  Solve for k using k = m1/2.  Solve 
for the modeled value of tc using tc = /(2).  

3. Use the measured data point {1c, Fc} to solve for k using 
k = (Fc – Fo)/(1c – 1o) = Fc/1c.  Solve for  as above and 
solve for the modeled value of tc as above. 
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4. Use the measured value of tc to solve for  using  = 
/(2tc).  Solve for k using k = m1/2.  Solve for the 
modeled values of 1c as v1o-1, the terminus of closure 
acceleration as -v1o and the terminus of closure force 
as -m1v1o. 

2.2 Power law closure phase force-deflection model 
 
The power law models for both phases are expressed as 
force as a function of deflection.  Both the force and the 
deflection are time parametric.  This time parametric nature, 
denoted as (t), is not shown, in certain situations, in the 
following derivation, simply for the purposes of clarity.  It 
should not be forgotten that this time dependence is patent.  
With this noted, the closure phase power law model is: 

 1 1a a

0 1 0 1a a F u  (19) 

The form to the right of the last equality again derives from 
equation (6).  Equation (19) correctly produces an initial 
zero valued force at an initial zero deflection (at an initial 
zero displacement).  It should also be apparent that this 
equation is log-linear.  For two operands x and y, a power  p, 
and a logarithm of base b, the following product, quotient, 
power and root identities hold. 

      b b blog xy log x log y   (20) 

      1
b b blog xy log x log y    (21) 

    p
b blog x plog x  (22) 

  
p 1

b blog x p log x  (23) 

The logarithm and exponentiation are related by the 
following, where b is a positive, real number: 

  y
blog b y  (24) 

For the subject work, the base, b, for all evaluations is set to 
Euler’s number, e, and the logarithms are noted as the 
natural logarithm.  This choice is made due to common usage 
and does not reduce the generality of the derivation 
secondary to the fact that one may readily convert a 
logarithm from one basis to another using the following: 

  
 

 
c

b

c

log x
log x

log b
  (25) 

With these preliminaries established, taking the natural log 
of equation (19) leads to the following: 

        1a

0 1 0 1 1ln ln a ln a a ln  F    (26) 

The slope-intercept appearance of this equation is patent.  A 
point of importance to note is the fact that ln(0) is equal to 
negative infinity.  Now, if equation (19) is substituted into 

equation (7), it can readily be seen that the resultant 
equation of motion is non-linear. 

      1a

1 0 1m t a t u u 0  (27) 

A closed form solution for equation (27) is not determinable 
using the methods that are appropriate for solving linear 
differential equations.  We further note that the closure 
phase model has two parameters (a0 and a1), unlike the 
linear model, which has a single parameter, and thus 
requires two equations in order to solve for both 
parameters.  One approach would be to write equation (19) 
at the terminus and at the start of the closure phase.  This, 
however, is insufficient, due to the fact that the latter 
reduces to 0 = 0.  A second approach would be to write this 
equation at any two points, t = ta and t = tb, for which the 
deflection and force are not zero valued.  One could then 
solve for the model parameters as: 

 

1 1

1

a 1a
1

b 1a

a a

0 a 1a b 1b

a ln ln

a



 

    
      

    

 

F

F

F F





 

 (28) 

Finally, and one may use the modeled IWA to determine a 
second equation.  For this model and case, the IWA is: 

 
1c 1c

1 1a a 10
1 0 1 1 1c

1

a
IWA d a d

a 1


    

 
0 0

F
 

     (29) 

We may rewrite the form on the right of the last equality by 
separating the exponentiated term. 

 
1a

0 1c c c 1c
1c 1c 1

1 1

a
IWA a 1

a 1 a 1 IWA
    

 

F F 
   (30) 

Equation (30) is the preferred initiating power law modeling 
equation for the closure phase.  The IWA is known as per 
equation (8) and 1c and F1c are determinable from the data.  
Furthermore, the equation has only one unknown, the 
power, a1.  Clearly, a1 ≥ 0 in order to avoid a singularity at  = 
0.  We further note that a1 > 0 is more apt secondary to the 
fact that the deflection raised to a zero power produces a 
solution of unity for all relevant deflection values.  This 
constraint, in turn, as per equation (30), requires that 
Fc1c/IWA > 1.  When this holds and when the power is 
known, the coefficient, a0, can be solved for by writing 
equation (19) at the terminus of closure and solving directly.   

Finally, if one considers two points during the closure 
response {1, F1} and {2, F2}, where neither the deflection 
nor the force is zero-valued, the corresponding IWA  is: 
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 

 

 

2

1

1

1 1

1 1

a

0

a 1 a 10
2 1

1

a a

0 2 2 0 1 1

1

2 2 1 1

1

IWA a

a

a 1

1
a a

a 1

1

a 1

 



 


 


 




F F







 

   

 

 (31) 

2.3 Linear separation phase force-deflection model 
 
The separation phase terminates at the first point in time, 
after the terminus of the closure phase, at which the collision 
force returns to zero.  Since the total barrier force is known, 
the value of ts can be directly determined from the data.  The 
terminus of separation acceleration, velocity and 
displacement can then be determined in the same manner as 
was discussed for the terminus of closure.  With the 
terminus of separation velocity known, the IWR can be 
determined using equation (9).  Again, no force-deflection 
model is needed to make these determinations.   

For the linear model for the separation phase, a model for 
which closed form analytic solutions for the kinematic 
responses are determinable, the solution process is aided by 
implementing a new temporal variable, , where  = t – tc.  As 
a result, 0  = tc - tc = 0 and s = ts – tc.  One may wish to use 
equation (13) with a replacement of t by  and using the 
terminus of closure displacement and velocity as the initial 
conditions.  Such an approach, however, does not result in a 
correct, complete set, of kinematic equations.  Instead, the 
correct equation of motion is [14]: 

    1 1 1 1 1c 1cm k m k    u u u u  (32) 

In this equation, the terms on the right side are evaluated at 
0 = 0 (i.e. they are the terminus of closure acceleration and 
displacement).  Model parameters with an overbar 
specifically denote separation phase model parameters.  The 
kinematic solutions are readily determinable as [14]: 

     2
1 1c 1c 1 cos     u u u  (33) 

    1
1 1c sin   u u  (34) 

    1 1c cos  u u  (35) 

In these equations, the separation phase circular frequency 
is the positive real root of the following: 

  
0.5

1km  (36) 

The modeled value for s is based upon the acceleration 
response.  Because the terminus of closure acceleration is 
not zero valued, the cosine term must be zero-valued for the 

acceleration to be zero at the terminus of separation.  This 
occurs at: 

  
1

s 2


     (37) 

The modeled terminus of separation displacement and 
velocity are obtained by substitution of this solution into 
equations (33) and (34) respectively. 

 2 1
1s 1c 1c 1s 1c

     u u u u u  (38) 

For the force-deflection response, we first consider a linear 
function y = f(x) that has a value ya = f(xa) and where x ≥ xa.  
The definition of the slope of the linear function allows the 
equation to be written in the following manner: 

  a
a a

a

y y
slope y y slope x x

x x


    


 (39) 

One may take a similar approach for the case where yb = f(xb) 
and where xb ≥ x. 

  b
b b

b

y y
slope y y slope x x

x x


    


 (40) 

The boundary points for the linearly modeled force-
deflection response are (1c, Fc) at  = 0 and (1s, 0) at  = s.  
In looking at the two previous equations, we note that y is 
analogous to F(()), x is analogous to (), the values with 
the subscript of a are analogous to the values at  = 0 and the 
values with the subscript of b are analogous to the values at  
= s.  As a result: 

  c 1 1ck  F F    (41) 

    s 1 1s 1 1sk k    F F      (42) 

The modeled IWR can be obtained by multiplying the 
collision force by the differential of the deflection and 
integrating over the domain. 

 
    

   

 

1s

1c

1

1c 1s c 1s 1c

c
1c 1s c 1s 1c

1s 1c

c 1c 1s

IWR d

1
2 k

2

1
2

2

1

2

 

   

 
    

 

 

 F

F

0 F
F

F







   

   
 

 

 (43) 

The linear separation phase model is defined by a single 
parameter.  Just as with the linear closure phase, the 
problem is overdetermined.  A number of approaches may 
again be utilized.  For all approaches, it is taken as a given 
that the terminus of closure values are known, irrespective 
of how they were determined.   
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1. Determine 1s = u1s from the data (at ts) and calculate the 
modeled separation phase stiffness, circular frequency, 
time of separation and IWR. 

2. Use the known IWR to calculate the modeled value of 1s 
from equation (43) followed by calculation of the 
modeled separation phase stiffness, circular frequency 
and time of separation. 

3. Use the data to determine s, calculate the separation 
phase modeled circular frequency, stiffness, terminus 
deflection (residual) and IWR. 

With the linear model  for the separation phase covered, we 
proceed with considering the power law model for the 
separation phase. 

2.4 Power separation phase force-deflection model 
 
For the power law model for the separation phase, we first 
note that the form of the relationship shown by equation 
(19) is inadequate.  As a first option, we consider the form of 
equation (39) and replace the terms with the corresponding 
terms from the power law formulation. 

         c 1 1 1cln ln a ln ln  F F    (44) 

Rearranging this equation using equations (21) and (22) 
leads to the following result. 

 
1a

1

c 1c

ln ln
    
    
     

F

F




 (45) 

Exponentiating both sides of the equality leads to the 
following result. 

 
1a

1

c 1c

 
  
 

F

F




 (46) 

The form shown in equation (46), rather than that shown in 
equation (44), may aid in showing the problem with this 
formulation when 1 = 1s.  The corresponding force value is 
Fs = 0.  This value, when used in equation (44), results in the 
term on the left of the equality becoming negative infinity.  
When used in equation (46), the term on the left of the 
equality reduces to zero.  However, neither the residual 
deflection nor the peak deflection are zero valued, thereby 
making the equation incorrect.  Setting this issue aside for 
the moment, if one were to use equation (46) to determine 
the IWR: 

 

 
 

11s 1s

1c 1c

1 1

1

a

1
1 c 1

1c

a 1 a 1c
1c 1sa

1c 1

IWR d d

a 1

 

 
      

 

 


 F F

F

 

 


 



 


 (47) 

For this model, when the IWR, Fc, 1c and 1s are known, the 
solution for the separation phase power must be determined 
numerically. 

A second option for the form of a power law separation 
phase model is a horizontally shifted model: 

   1a

0 1 1sa F    (48) 

This form correctly predicts a value of force of Fs = 0 when 1 
= 1s.  When 1 = 1c, F = Fc, which allows for the following 
solution: 

 
  1

c
0 a

1c 1s

a 


F

 
 (49) 

Substitution of this result into equation (48) leads to the 
following result: 

 
 

  1

1

ac
1 1sa

1c 1s

 


F
F  

 
 (50) 

The IWR, based upon this formulation, is: 

 
 

 

 

 

 

1s

1c

1s

1

1

1c

1

1

1

ac
1 1s 1a

1c 1s

a 1

1c 1sc

a
11c 1s

c
1c 1s

1

IWR d

d

a 1

a 1



  

 
    
  

 
 
   

 






F

F

F

F











  
 

 

 

 

 (51) 

For this model, when the IWR, Fc, 1c and 1s are known, the 
solution for the separation phase power can readily be 
determined in closed form as: 

  c
1 1c 1sa 1

IWR
  

F
   (52) 

A third option for the form of a power law separation phase 
model is a horizontally and vertically shifted model. 

   1a

0 0 1 1ca  F F    (53) 

At  1 = 1c: 

   1a

c 0 0 1c 1c 0 ca    F F F F   (54) 

At 1 = 1s: 

  
 

1

1

a c
c 0 1s 1c 0 a

1s 1c

a a      


F
F 0 F  

 
 (55) 

Substitution of the results from equations (54) and (55) into 
equation (53) leads to the following result: 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 10 Issue: 3 | Mar 2023              www.irjet.net                                                                         p-ISSN: 2395-0072 

 

© 2023, IRJET     |     Impact Factor value: 8.226     |    ISO 9001:2008 Certified Journal     |    Page 582 
 
 

 
 

 

1

1

a

1 1c

c a

1s 1c

1
 
  
  

F F
 

 
 (56) 

The IWR for this formulation is: 

 
 

 

 

1s

1c

11s

1

1c

1

a

1 1c

c 1a

1s 1c

1
c 1c 1s

1

IWR d

1 d

a

a 1

  

  
     

    

 
  

 





F

F

F











 


 

 

 (57) 

For this model, when the IWR, Fc, 1c and 1s are known, the 
solution for the separation phase power can be determined 
as: 

  
1

c
1 1c 1sa 1

IWR



 
   
 

F
   (58) 

For the first formulation, substitution of {1c, Fc} into 
equation (46) leads to the result of 1 = 1.  For the second 
formulation, substitution of the same data point into 
equation (50) leads to the result of Fc = Fc.  The same result is 
obtained by substitution of the same data point into equation 
(56) in regards to the third formulation.  Thusly, if a power 
law model is used for the closure phase followed by the use 
of another power law model for the separation phase, one 
must find a different method of relating the models outside 
of the force balance that must be present at the 
contemporaneous terminus of closure and start of 
separation.   The approach taken herein is to use the square 
of the coefficient of restitution, which, for the subject FRMB 
impact case, is the ratio of the IWR to the IWA.  For the first 
model, the ratio of equation (47) to equation (29) results in 
the following relationship between the terminus of closure 
and terminus of separation deflection values: 

 

 
1

1a 1

1
1c 1s 2 2

1 1

a 1

a a 1




 
  

     
   (59) 

For the second model, the ratio of equation (51) to equation 
(29) leads to the following: 

 

1

2 1
1c 1s

1

a 1
1

a 1



  
       

   (60) 

For the third model, the ratio of equation (57) to equation to 
equation (29) leads to the following: 

 
 

1

2 1
1c 1s

1 1

a 1
1

a a 1



  
        

   (61) 

The results of each of the last three equations can be 
substituted into equation (19) written at {1c, Fc}.  For the 
first model: 

 

 
1

1 1

1

a a 1

a1
c 0 1s2 2

1 1

a 1
a

a a 1




 
  

     
F   (62) 

For the second model: 

 

1

1

a

a2 1
c 0 1s

1

a 1
a 1

a 1



  
       

F   (63) 

For the third model: 

 
 

1

1

a

a2 1
c 0 1s

1 1

a 1
a 1

a a 1



  
        

F   (64) 

For each of these three relationships, it can readily be seen 
that the form is of a constant multiplied by the terminus of 
separation deflection raised to the a1 power.  Thusly, these 
relationships are log-linear as was the relationship given by 
equation (19). 

 

2.5 Power law kinematic response 
 
It was previously noted that the differential equation of 
motion for this model, given by equation (27), is nonlinear 
and not amenable to being solved for in closed form.  We 
may, however, determine an approximate solution using a 
numerical method.  Direct time integration, using the explicit 
central difference method, is used herein.  We start with the 
Taylor series expansion of a function f(x) at x = a, which can 
be written as: 

  
   

 
n

n

n 0

f a
f x x a

n!





   (65) 

Where f(n)(a) is the nth derivative of f(x) evaluated at x = a.  
Expanding the summation leads to the following: 

        
2

2

2
x a x a

df 1 d f
f x f a x a x a

dx 2 dx 

       (66) 

Replacing x with the displacement u, replacing a with ti, 
which denotes the time at the ith time step and replacing x 
with t leads to the following form: 

        
i i

2
2

i i i2
t t t t

d 1 d
t t t t t t

dt 2 dt 

     
u u

u u (67) 

When t = ti + t, equation (67) becomes: 

    
i i

2
2

i i 2
t t t t

d 1 d
t t t t t

dt 2 dt 

      
u u

u u  (68) 
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When t = ti – t, equation (67) becomes: 

    
i i

2
2

i i 2
t t t t

d 1 d
t t t t t

dt 2 dt 

      
u u
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Switching to the overdot notation, truncating equations (68) 
and (69) to the first two terms followed by the subtraction of 
the former from the latter leads to the following: 
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Truncating the same two equations to their first three terms 
followed by addition leads to the following: 
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Substitution of equation (71) into equation (27) followed by 
rearrangement leads to the following solution: 
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For the first timestep, the solution for the displacement at 
the second timestep, requires the solution for the previous 
timestep.  This can be determined by solving equation (70) 
for the displacement u(ti + t), substituting the result into 
equation (71) and rearranging (for this, i = 1, t = to = 0). 
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For each time step, we first solve for the displacement at the 
next time step using equation (72) and then solve for the 
velocity and acceleration at the current time step using 
equations (70) and (71), respectively.  Equation (72) is the 
correct equation for the closure phase.  Once the velocity of 
the vehicle becomes negative, the form of this equation 
changes based upon the separation phase model of choice.  
For the first separation phase model, the displacement 
solution becomes: 
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For the second separation phase model, the displacement 
solution becomes: 
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For the third separation phase model, the displacement 
solution becomes: 
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It should be readily apparent that only the first model does 
not require a priori knowledge of the terminus of separation 
deflection. 

3.METHODS AND MATERIALS 
 
The models developed above were evaluated, on a 
preliminary basis, using data generated from a pair of 
controlled collision tests.  The first test was NHTSA test 
number v03196, conducted as a baseline test, involving a 
frontal impact between a 1995 Chevrolet Lumina LS APV 
minivan (VIN: 2G1WN52XS9243954, transverse 3.4 liter six 
cylinder engine, four speed automatic front wheel drive, 
mass = 1781 kg) and an instrumented FRMB (36 load cells 
arranged in four rows and nine columns).  The second test 
was NHTSA test number v01990, conducted as a NCAP test, 
involving a frontal impact between a 1994 Pontiac Trans 
Sport minivan (VIN: 1GMDU06D5RT202095, transverse 3.1 
liter six cylinder engine, three speed automatic front wheel 
drive, mass = 1962 kg) and an instrumented FRMB 
(configuration as per the previous).  This pair of tests was 
chosen secondary to the former being a lower speed impact 
test(impact speed of 24.0 KPH) and the latter being a higher 
speed impact test (impact speed of 56.5 KPH) for the same 
vehicle platform.   

The platform determination was based upon an examination 
of the components of the salient subsystems as documented 
by the parts catalog information produced by Mitchell 
International, Inc. (San Diego, California, USA).  The 
structural components, for the platform year range of 1994-
1996, were the same for the front inner structure, side 
structure (including the rails) and subframe.  The 
components comprising the front suspension were 
substantially similar.  Differences were noted with respect to 
the front bumper system.  The part numbers differed for the 
impact absorber (referenced as such for the Chevrolet and 
referenced as a reinforcement for the Pontiac) and the 
impact bar.  The part numbers for the front bumper 
mounting brackets were the same (referenced as impact bar 
reinforcements for the Chevrolet and as impact bar plates for 
the Pontiac).   

For each test, the instrumentation data in NHTSA EV5 ASCII 
X-Y format, was imported directly from the NHTSA website.  
For each test, the EV5 file was imported into a symbolic 
mathematics software package (Mathematica v. 12.0; 
Wolfram Research, Inc.; Champaign, Illinois, USA).  The same 
software package was used for all data reductions.  The EV5 
file was parsed using a custom written program that utilized 
the standardized EV5 data element designations.  The load 
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cell barrier instrumentation file names were extracted using 
string pattern matching.  Each file was individually imported 
and filtered using a custom written Society of Automotive 
Engineers (SAE) channel frequency class (CFC) 60 filter.  The 
data prior to time t = to = 0 was discarded followed by 
transposing 100 milliseconds of data, at the start and end of 
the signal, about (0, 0), for signal padding.  This padded 
signal was passed through the digital filter forward and then 
in reverse followed by discarding of the padding.   

The filtered load cell data was summed, at each time point, to 
generate the total barrier force time history.  The discrete 
time-deceleration history for the test vehicle was 
determined by dividing the total barrier force, at each time 
point, by the mass of the test vehicle.  The discrete time-
velocity and displacement of the test vehicle, with the 
displacement equating to the deflection for the FRMB impact 
case, was determined by numerically integrating the time-
deceleration history.   As expected, the velocity did not reach 
a zero value at a sampled data point but instead reached that 
value between a pair of immediately adjacent data points.  
This was also case for the acceleration in regards to the 
separation phase analysis.  For both the velocity and the 
acceleration, the data points that bounded the zero value 
were used to generate a linear interpolation function and 
determine the time at which the abscissa was crossed.  The 
same indices for the other kinematic responses were then 
linearly interpolated and solved at the time values at which 
the abscissa was crossed from the previous step. 

The linear model for the closure phase was evaluated in 
accordance with the four methods described in Section 2.1.  
The linear model for the separation phase was evaluated in 
accordance with the three methods described in Section 2.3.  
The power law model for the closure phase consisted of 
using equation (30) to determine the power value and using 
equation (28) to determine the coefficient value.  The power 
law model for the separation phase was implemented for 
each of the three methods detailed in Section 2.4.  Finally, the 
numerically integrated kinematic response, for the power 
law model, was determined using equation (72) for the 
closure phase displacement and equation (74) for the 
separation phase displacement.   

4.RESULTS 

The data reduction for both collision tests, as expected, 
produced total barrier force time histories that were 
indicative, even under the modeling constraints of 
uniaxiality, of a multiple degree of freedom (MDOF) system 
response.  This is clearly evidenced by multiple, interval, 
substantive, extrema rather than a singular extremum.  The 
total barrier force time history for both tests is shown in 
Figure 2.  For the lower speed test (i.e. v03196), the closure 
phase parameters were determined to be the following: tc = 
85.83 msec, u1c = 1c = 0.3732 m, a1c = -122.1 m/sec2, Fc = 
2.174 105 N and IWA = 3.958 104 J.  The closure phase 

parameters for the higher speed test (i.e. v01990) were 
determined to be the following: tc = 99.90 msec, u1c = 1c = 
0.8244 m, a1c = -96.40 m/sec2, Fc = 1.891 105 N and IWA = 
2.416 105 J. 

 

 

Fig -2: Total barrier force time histories for test v01990 
(blue for closure, red for separation) and test v03196 

(orange for closure, green for separation) 

The separation phase parameters for the lower severity 
collision test were determined to be the following: ts = 179.2 
msec (s = 93.34 msec), u1s = 1s = 0.2186 m, v1s = -1.943 
m/sec and IWR = 3.361 103 J.  The separation phase 
parameters for the higher severity collision test were 
determined to be the following: ts = 181.6 msec (s = 81.71 
msec), u1s = 1s = 0.6952 m, v1s = -2.024 m/sec and IWR = 
4.018 103 J.  The coefficient of restitution for the lower 
severity test was -0.2914 and for the higher severity test was 
-0.1290.  The acceleration, velocity and displacement 
(deflection) time histories, for both tests, are shown in 
Figures 3-5, respectively. 

 

 

 

Fig -3: Acceleration time histories for test v01990 (blue for 
closure, red for separation) and test v03196 (orange for 

closure, green for separation) 
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Fig -4: Velocity time histories for test v01990 (blue for 
closure, red for separation) and test v03196 (orange for 

closure, green for separation) 

 

Fig -5: Displacement (deflection) time histories for test 
v01990 (blue for closure, red for separation) and test 

v03196 (orange for closure, green for separation) 

The acceleration time histories mirror the total barrier force 
time histories, as expected, given that the former are merely 
the latter scaled, along the ordinate, by the inverse of the 
mass of the corresponding test vehicle.  The responses for 
both collision severities were similar.  The initial increase in 
the response magnitude was followed by a slight drop in the 
lower severity test and a region of reduced slope in the 
higher severity test.  This was then followed by a double 
peak response, with an interposed local minimum, followed 
by a relatively lengthy tail response.  The peak force 
magnitude, for both cases, occurred during closure rather 
than at the terminus of closure.  The smoothing effect of 
integration can readily be seen in the velocity time histories 
shown in Figure 4 and the displacement (deflection) 
responses shown in Figure 5.  For both tests, the peak 
deflection occurred at the terminus of closure.  The force-
deflection response for the two tests is shown in Figure 6. 

 

Fig -6: Force-deflection responses for test v01990 (blue for 
closure, red for separation) and test v03196 (orange for 

closure, green for separation) 

The force-deflection response for both tests is quite similar, 
but not an exact overlay, over approximately the first 0.130 
meters of deflection.  The local minimum seen in the 
acceleration response for the lower severity test and the 
region of reduced slope seen in the higher severity test are 
both manifested in the force-deflection response.  For the 
lower severity test, the peak force magnitude occurs with the 
second peak of the double peak response.  For the higher 
severity test, the peak force magnitude occurs with the first 
peak of the double peak response.  The peak deflection, for 
the lower severity case, occurs much closer to the peak 
collision force, when compared to the higher severity test.   

The linear model fits for the closure phase force-deflection 
response for the higher severity collision test are shown in 
Figure 7.  The first model, based upon the known values for 
1c and Fc, resulted in values for k, , tc and the IWA of 2.294 
105 N/m, 10.81 sec-1, 145.3 msec and 7.796 104 J, 
respectively.   The second model, based upon the known 
values for 1c and the IWA resulted in values for k, , tc and 
Fc of 7.110 105 N/m, 19.04 sec-1, 82.52 msec and 5.862 105 J.  
The third model, based upon the known time at which the 
closure phase terminates, resulted in values for k, , 1c, Fc 
and IWA of 4.851 105 N/m, 15.72 sec-1, 9.981 10-1 m, 4.842 
105 N and 2.416 105 J, respectively. 

 

Fig -7: Closure phase force-deflection response for test 
v01990 (blue) with the first, second and third models, as 
per the text, shown by the red, green and yellow curves, 

respectively. 
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The linear model fits for the closure phase force-deflection 
response for the lower severity collision test are shown in 
Figure 8.  The first model, based upon the known values for 
1c and Fc, resulted in values for k, , tc and the IWA of 5.827 
105 N/m, 18.09 sec-1, 86.84 msec and 4.0571 104 J, 
respectively.  The second model, based upon the known 
values for 1c and the IWA resulted in values for k, , tc and 
Fc of 5.684 105 N/m, 17.87 sec-1, 87.92 msec and 2.121 105 J.  
The third model, based upon the known time at which the 
closure phase terminates, resulted in values for k, , 1c, Fc 
and IWA of 5.965 105 N/m, 18.30 sec-1, 3.643 10-1 m, 2.173 
105 N and 3.958 104 J, respectively. 

For the separation phase of the lower severity test, the three 
linear models consisted of (1) using 1s from ts, (2) using the 
IWR and (3) using s.  For the first case, the modeled values 
for the stiffness, circular frequency, s and IWR are 1.407 106 
N/m, 28.10 sec-1, 55.90 msec and 3.360 104 J, respectively.  
For the second case, the modeled values for the stiffness, 
circular frequency, 1s and s are 7.033 106 N/m, 62.84 sec-1, 
3.422 10-1 m and 25.00 msec, respectively.  For the third 
case, the modeled values for the stiffness, circular frequency, 
1s and IWR are 5.043 105 N/m, 16.83 sec-1, -5.796 10-2 m 
and 4.687 104 J, respectively.  These results are shown in 
Figure 9. 

 

Fig -8: Closure phase force-deflection response for test 
v03196 (blue) with the first, second and third models, as 
per the text, shown by the red, green and yellow curves, 

respectively. 

 

Fig -9: Separation phase force-deflection response for test 
v03196 (blue) with the first, second and third models, as 
per the text, shown by the red, green and yellow curves, 

respectively. 

For the higher severity test, the modeled values generated by 
the first case, for the stiffness, circular frequency, s and IWR 
are 1.463 106 N/m, 27.31 sec-1, 57.52 msec and 3.536 105 J, 
respectively.  For the second case, the modeled values for the 
stiffness, circular frequency, 1s and s are 4.451 106 N/m, 
47.63 sec-1, 7.820 10-1 m and 32.98 msec, respectively.  For 
the third case, the modeled values for the stiffness, circular 
frequency, 1s and IWR are 7.251 105 N/m, 19.22 sec-1, 5.636 
10-1 m  and 2.467 104 J, respectively.  These results are 
shown in Figure 10. 

The power law model, as a singular model for the closure 
phase of the higher severity collision test, based upon the 
data, failed to meet the required criterion of (Fc1c)/IWA > 1.  
The value of the evaluated term on the left of the inequality 
was determined to be 0.6453.  For the lower severity 
collision test, the value of this term was determined to be 
2.050, which resulted in a value of a0 = 6.123 105 (units of N 
per meter raised to the a1 power) and an a1 value of 1.050.  
The overlay of this model, upon the closure phase data, is 
shown graphically in Figure 11. 

 

Fig -10: Separation phase force-deflection response for 
test v01990 (blue) with the first, second and third models, 
as per the text, shown by the red, green and yellow curves, 

respectively. 

 

Fig -11: Closure phase force-deflection response for test 
v03196 (blue) with the power law model fit overlayed 

(red). 
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For the higher severity collision test, the separation phase 
power law model exemplified by equation (46) resulted in a 
power term of 37.75 and with a residual force magnitude, at 
the terminus of separation, of 302.5 N.  The second model, 
for this test, exemplified by equation (50) resulted in a 
power term of 5.084.  The third model, for this test, 
exemplified by equation (56) resulted in a power term of 
1.967 10-1.  The three model fits to the separation phase 
force-deflection response are shown in Figure 12.   

 

Fig -12: Separation phase force-deflection response for 
test v01990 (blue) with the first, second and third models, 
as per the text, shown by the red, green and yellow curves, 

respectively. 

For the lower severity test, the first model produced a power 
term of 23.14 and with a residual force magnitude of 9.147 
10-1 N.  The second model produced a power term of 9.001.  
The third model produced a power term of 1.111 10-1.  The 
three model fits to the separation phase force-deflection 
response are shown in Figure 13. 

 

Fig -13: Separation phase force-deflection response for 
test v03196 (blue) with the first, second and third models, 
as per the text, shown by the red, green and yellow curves, 

respectively. 

For the lower severity collision test, the modeled kinematic 
response, based upon the power law model for the closure 
phase followed by a power law model for the separation 
phase, was evaluated by means of numerical integration.  
Because there was only one model for the closure phase, the 
differences in the modeled kinematics were due to the three 
different power law models for the separation phase.  The 

models are referenced as before.  For the first model, the 
values of ts, 1s, velocity at separation and acceleration at 
separation are 177.8 msec, 2.182 10-1 m, -1.943 m/sec and -
4.935 10-4 m/sec2, respectively.  The values for the second 
model are 182.9 msec, 2.078 10-1 m, -1.943 m/sec and 0 
m/sec2, respectively.  Finally, for the third model, the values 
are 194.6 msec, 2.186 10-1 m, -1.943 m/sec and 0 m/sec2.  
The results are shown, graphically, for the acceleration, 
velocity and displacement, in Figures 14-16, respectively. 

 

Fig -14: Acceleration-time history for test v03196 (blue) 
with the first, second and third models, as per the text, 

shown by the red, green and yellow curves, respectively. 

 

Fig -15: Velocity-time history for test v03196 (blue) with 
the first, second and third models, as per the text, shown 

by the red, green and yellow curves, respectively. 

 

Fig -16: Displacement-time history for test v03196 (blue) 
with the first, second and third models, as per the text, 

shown by the red, green and yellow curves, respectively. 
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5.DISCUSSION 

Residual damage based methods can readily be viewed as 
one of the simplest approaches for determining quantitative 
estimates for motor vehicle collision severity.  For model 
parameter quantification from controlled collision test data, 
the data reduction process does not require the evaluation of 
any of the dynamic instrumentation data that is generated 
during the collision test.  In contrast, even the simplest 
dynamic modeling approaches require significant, albeit 
readily implementable, data reduction.  The SDOF models 
presented in this work fall within this classification.  This 
statement is made because of the use of ubiquitous 
uniaxiality coupled with a single lumped mass for the test 
vehicle.  The first condition, as noted previously, greatly 
simplifies the analysis by removing the necessity for 
determining the time-varying DCM for each local frame of 
reference that is salient to the analysis.  The second 
condition reduces the number of second order differential 
equations of motion to unity.   

The MDOF nature of the system response during closure, 
even for the uniaxial approximation, can readily be seen by 
simple examination of Figure 6.  This is exemplified by the 
local extrema and lack of a ubiquitous monotonic response.  
These local responses are due to frontal subsystems such as 
the front bumper system, front frame, engine and the front 
wheels and suspension.  The impact of these subsystems, 
within the context of a SDOF modeling approach, is variable.  
For the lower severity collision test, as shown in Figure 8, 
the deviation of the response from the case of a purely 
monotonically increasing function is limited and the force at 
the terminus of the closure phase is close in magnitude to 
the peak force.  Thusly, the three linear fits are closely 
approximated to each other as well to the actual response 
(when compared with the higher collision severity test).  
This was clearly not the case for the closure phase of the 
higher severity collision test.  Visual inspection of Figures 2 
and 3 shows that the peak force and acceleration occur 
relatively early during the closure phase.  This is then 
manifested with a peak force that occurs prior to the peak 
deflection as seen in Figures 6 and 7.  From the latter, it can 
readily be seen that the three linear closure phase models 
diverge.  Furthermore, none of the models provides a good 
fit for the data. 

One of the findings of the subject work, which is a novel 
finding with respect to the application context, is that the 
power law model, as a single model for the entirety of the 
closure phase, has a limitation based upon the inequality 
Fcc/IWA > 1.  This inequality did not hold for the higher 
severity collision test considered in the subject work.  One 
may readily make the statement that collision tests with 
closure phase force-deflection responses that are similar to 
the response of the subject higher severity collision test, in 
regards to an early peak force magnitude and relatively low 
force magnitude at the terminus of closure, would also result 

in the inequality not holding.  This statement is based upon 
deterministic considerations.  One may further state that the 
set of characteristics found in the closure phase response of 
the higher severity collision test represent one class, but not 
necessarily the only class, of response for which the 
inequality would not hold.  The lower severity collision test, 
on the other hand, provided data for which the inequality 
held.  The closure phase power law fit, however, was very 
close to being linear.  It is unclear if this approximate linear 
fit represents a limitation on the use of a single power law 
function for modeling the closure phase. 

Two additional points regarding the closure phase response 
are worthy of discussion.  The first point is that the force-
deflection response for the approximate first 0.130 meters of 
deflection is quite similar between the higher and lower 
severity collision tests.  That such similitude exists over a 
non-trivial deflection magnitude is more germane than the 
magnitude itself.  The finding shows that the initial portion 
of the response follows a very similar path for the two 
collision severities in question.  The slight differences can be 
attributed to differences between the test vehicles, 
variations associated with the implementation of the testing 
protocols and response contributions, albeit minor, from 
other load paths or a combination.  The contributions of 
these other load paths become more substantial in the 
higher severity collision test, following the initial portion of 
similitude.  The second point is that it is highly unlikely that 
there would be a substantially different response for a lower 
severity collision, for the deflection regime starting at zero 
and terminating at the appropriate value before 0.130 
meters of deflection.  This statement holds due to the fact the 
subject lower severity collision test has to ‘pass through’ the 
same response regime, engaging the same vehicle frontal 
systems, in the same manner, for impacts with a lower 
severity. 

For both tests, the linear modeling approach faired quite 
poorly, as expected, for the separation phase.  This was most 
apparent for the third model, for the higher severity collision 
test, as shown in Figure 9.  Qualitatively, the separation 
phase response for both tests can be characterized as being 
biphasic.  The first phase of the response consists of a steep 
drop in the force magnitude with a minimum but finite 
decrement in the deflection.  The second phase of the 
response consists of a steep decrease in the deflection with a 
minimum but finite decrement in the collision force.  The 
transition between the two phases is relatively smooth 
(rather than abrupt).  For both tests, the power law modeling 
approach provided a substantially better fit to the separation 
response when compared with the linear model fits.   For the 
higher severity collision test, as evidenced by Figure 12, the 
first and second separation phase power law models were 
essentially overlayed and provided a better fit to the actual 
data than the third model.  Again, it should be noted that the 
first model, by its design, does not predict a zero valuation 
for the force at the terminus of the separation phase. These 
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findings are also apt for the lower severity collision test, as 
per Figure 13.   

For the lower severity collision test, the first two models for 
the separation phase, again, were virtually overlayed in 
regards to kinematic responses shown in Figure 14-16.  Both 
of these models provide a better fit to the actual data when 
compared to the fit provided by the third model.  With 
respect to the terminus of the closure phase for the collision 
test, the modeled responses lag the actual response 
secondary to the former falling between the time steps of the 
latter.  The impact of this is most apparent on the 
acceleration response as shown in Figure 14.  The 
differences between the actual data and the first two models, 
in regards to the acceleration response, as expected, are 
minimized for both the velocity and displacement responses 
(as per Figures 15 and 16 respectively).   

While only two tests were considered in the subject work, 
there are a number of findings that are of utility when one 
considers future development.  The first, which retains both 
the SDOF approach and ubiquitous uniaxiality, is the 
consideration of a multistep power law formulation for the 
separation phase.  This consideration derives from the fact 
that the model coefficients, for each power law formulation, 
for the two tests, differed.  Ideally, for a given platform and a 
given model, the model parameters should be the same 
across all salient collisions that traverse the same severity 
domain.  The second consideration for future development is 
the development of a MDOF model while retaining 
ubiquitous uniaxiality.  Such an approach would be most 
useful for collision tests with a closure phase similar to the 
higher severity test considered in the subject work.  This 
consideration requires evaluation of test vehicle fixed 
accelerometer data.  The third consideration for future 
development is the relaxation of ubiquitous uniaxiality.  This 
consideration requires one or both of the following two 
approaches.  The first is the use of vehicle fixed 
accelerometer data.  For a typical test, the configuration of 
the vehicle fixed accelerometer array allows for the 
determination of biaxial motion, in the x-z plane, for the 
body of the test vehicle.  The second approach for 
determining the kinematic response of the test vehicle is by 
means of videogrammetry.  In theory, the process can be 
undertaken using video from a single fixed position camera.  
However, it is likely that the analysis of video data from 
multiple camera locations would be the most appropriate for 
accurately quantifying the response in three dimensions.        
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