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LINEAR STABILITY ANALYSIS ON THE ONSET OF DDC IN A DPM 
SATURATED WITH CSF WITH INTERNAL HEATING 

Kamble Shravan S. 

Abstract - The effect of rotation on the onset of double 
diffusive convection (DDC)  in a horizontal couple stress fluid 
saturated porous layer with an internal heat source is 
investigated using linear stability analysis. The linear stability 
analysis is based on the classical normal mode technique. The 
extended Darcy model which includes the time derivative term 
and Coriolis term has been employed in the momentum 
equation. The expressions for stationary and oscillatory 
Rayleigh number are obtained as a function of governing 
parameters such as internal Rayleigh number, couple stress 
parameter, Taylor number,  normalized porosity and Lewis 
number and their effects on the stability of the system are 
shown graphically 

Key Words:  Rotation, couple stress fluid (CSF), Darcy 
Porous medium (DPM), Double diffusive convection (DDC), 
Internal Heat Source. 

Nomenclature 

Pr Prandtl number, 

Greek symbols 

 

perturbation  

   

p  Pressure 

T S

   T

   DPr  Darcy-Prandtl number, Pr Da

  Dimensionless amplitude of temperature 

   Tx Tz  Thermal anisotropy parameter, 

  Normalized porosity,    

  Porosity 

 
 

    
f f

c c c
sp p      1

  Ratio of specific heats, 

  Thermal coefficient of expansion T

  Solute coefficient of expansion S

l m  
2 2

a  Wave number, 

y z  Space coordinates 

T  Temperature difference between the walls 

, ,x

2 zK Ω   
2

Ta  Taylor number,  

T  Temperature 

S  Solute concentration 

S  Salinity difference between the walls 

t  Time 

   T T
g TKdTRa  Thermal Rayleigh Number,  

   S T
g SKdSRa  Solute Rayleigh Number,  

  TQd
2

iR  Internal Rayleigh number, 

    T T
g TKdTRa  Thermal Rayleigh number, 

   S T
g SKdSRa  Solute Rayleigh number, 

Q  Internal heat source 

v w  q  Velocity vector,  , ,u

Le  Lewis number, 

l m  Horizontal wavenumbers  ,

K  Permeability 

k  Unit normal vector in the z-direction 

i  Unit normal vector in the x-direction 

j  Unit normal vector in the y-direction 

g  Gravitational acceleration,  0,0, g  

K d  
2

/ Da   Darcy number, 

d  Height of the porous layer 

   c d
2

C  Couple stress parameter, 

pc  Specific heat of fluid at constant pressure 

l m    

c  Specific heat of solid 

2 2
a  Wavenumber, 
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S  Solute diffusivity 

T  Thermal diffusivity  

  Dynamic viscosity  

c  Couple stress viscosity 

  Kinematic viscosity, 
0

   

  Fluid density 

0  Reference density 

  Growth rate  

  Dimensionless amplitude of concentration 
perturbation 

Ω  Angular velocity,  0, 0, Ω  

Other symbols 

D  
d

dz
 

2

1  

2 2

2 2
x y

 


 
 

2
  

2
2

1 2
z


 


 

Subscripts 

b Basic state 

c Critical 

f Fluid 

h Horizontal 

m Porous medium 

0 Reference 

s Solid 

Superscripts 

* Dimensionless quantity 

′ Perturbed quantity 

Osc Oscillatory 

St Stationary  

1. INTRODUCTION  

Double diffusive convection (DDC) in porous media has been 
intensively studied because of its applications in different 
branches of science and engineering, such as underground 
disposal of nuclear wastes, groundwater pollution, 

contaminant transport in fluid saturated soils, liquid gas 
storage, and food processing [see [11] & [13]]. Double 
diffusive convection (DDC) in porous media has attracted 
many authors like [2] & [14] during the last several decades.  

The effect of internal heat source is important in several 
applications that include reactor safety analysis, metal waste 
form development for nuclear fuel, fire and combustion 
studies, and storage of radioactive materials. The onset of 
convection due to internal heat source has become an 
interesting problem in various areas of geophysics and 
engineering under the situations of radioactive decay or a 
week exothermic reaction within the porous material.  

Earlier studies of convective flows in porous media within 
rectangular enclosures, without the local heat source effects. 
A very little attention has been devoted to this problem with 
non-Newtonian fluids. The corresponding problem in the 
case of porous medium has also not received much attention 
until recently. With growing importance of non-Newtonian 
fluids with suspended particles in modern technology and 
industries, the investigations of such fluids are desirable. The 
studies of such fluids have applications in number of 
processes that occur in industry, such as the extrusion of 
polymer fluids, solidifications of liquid crystals, cooling of 
metallic plate in a bath, exotic lubrication and colloidal and 
suspension solutions. In the category of non-Newtonian 
fluids couple stress fluids have distinct features, such as 
polar effects.  

The main aim feature of couple stresses will be to introduce 
a size dependent effect that is not present in the classical 
viscous fluids. The theory of polar fluids and related theories 
are models for fluids whose microstructure is mechanically 
significant. The constitutive equations for couple stress 
fluids were given by [1]. 

Anisotropy is generally a consequence of preferential 
orientation of symmetric geometry of porous matrix or 
fibers and is in fact encountered in numerous systems in 
industry and nature. Also artificial porous matrix anisotropy 
can be made deliberately according to applications. [3] 
studied the combine defect of horizontal and vertical 
heterogeneity and anisotropy on the onset of convection in a 
porous medium.  [4] performed linear and nonlinear stability 
analysis of double diffusive convection in anisotropic porous 
media including Soret effect and reported that the effect of 
mechanical anisotropic parameters is to destabilize and of 
thermal anisotropic parameters is to stabilize the system. 

There are large number of practical situations in which 
convection is driven by internal heat source in the porous 
media. The wide applications of such convections occur in 
nuclear reactions, nuclear heat cores, nuclear energy, 
nuclear waste disposals, oil extractions, and crystal growth. 
[5] investigated linear stability analysis for the onset of 
natural convection in a fluid saturated porous medium with 
uniform internal heat source and density maximum in an 
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local thermal nonequilibrium model and predicted that 
internal heat source parameter advances the onset 
convection, [6] studied the onset of stationary convection in 
a low Prandtl number with internal heat source and found 
that effect of internal heat source parameter is 
destabilization. Recently, [7-10] have studied the problem of 
thermal instability in porous media with internal heat 
source. Few authors have studied on rotation with couple 
stress fluid in porous media [see [19], [20], [21], [22] & [23]]. 

Although few literatures on DDC in a porous medium 
saturated by ordinary fluid with or without an internal heat 
source is available, no attention has been devoted to the 
study of DDC in a porous layer saturated by a couple stress 
fluids in the presence of an internal heat and rotation. 
Therefore in the present work we intend to investigate the 
onset double diffusive convection in a rotating couple stress 
fluid saturated porous layer with an internal heat source 
employing a modified Darcy model using linear stability 
analyses. Our objective is to study how the onset criterion 
for stationary and oscillatory convection are affected by the 
Lewis number, solute Rayleigh number, Taylor number, 
Couple stress parameter, internal heat source and 
normalized porosity.   

2. GOVERNING EQUATIONS  

We consider an infinite horizontal couple stress fluid 

saturated porous layer confined between the planes 0z   

and z d  with the vertically downward gravity force g  

acting on it. A constant temperature 0T T   and 0T  with 

stabilizing concentrations 0S S   and 0S  respectively are 

maintained between the lower and upper surfaces. A 
Cartesian frame of reference is chosen with the origin in the 
lower boundary and z -axis vertically upwards. The porous 
layer rotates uniformly about the z -axis with a constant 
angular velocity (0,0, )   . The modified Darcy model, 

which includes the time derivative and the Coriolis term is 
employed as a momentum equation [see [17]]. The basic 
governing equations are 

     . 0q                                                                                   (1) 

   

0 0
0

2

2
( )

1
( )

T S

c

p T S g q

q
K

 
  

 

 

     

  

,                    (2) 

2

0( . ) ( )T

T
q T T Q T T

t
 


     


 ,                               (3)  

2
( . ) S

T
q S S

t
 


   


 ,                                                       (4) 

where,  the variables and constants have their usual 
meaning, as given in the Nomenclature. 
Further

( ) /( ) ,( ) (1 )( ) ( ) ,m f m s fc c c c cp p            c   

is the specific heat of the solid and 
pc  is the specific heat of 

the fluid at constant pressure respectively. 

1.1 BASIC STATE 

The basic state of the fluid is assumed to be quiescent and is 
given 

0 0 0b b b

b b b

q ( , , ),P P ( z ),T T ( z ),

S S ( z ), ( z ), ( z )   

  

  
 ,                                                 (5) 

The temperature bT ( z ) , solute concentration bS ( z ) , 

pressure bP ( z )   and density b( z ) , satisfy the following 

equations 

2 2

02 2

0 0 0

0 0

1

b b
b T b

b T b S b

dP d T d Sb g, Q( T T ) , ,
dz dz dz

[ ( T T ) ( S S )]

 

   

     

    

 ,          (6) 

Then the conduction state temperature and concentration 
are given by 

0

1

b

TSin( R ( z / d ))i
T ( z ) T

Sin Ri

 
  , 

01bS ( z ) S( z / d ) S     .                                                       (7) 

1.2 PERTURBED STATE 

On the basic state we superpose infinitesimal perturbations 
in the form 

b b b

b b

' ' '
q q q ,T T T ,S S S ,

' '
P P P ,  

     

   

       ,                           (8) 

where , primes indicate perturbations. Substituting Eq. (5) 
into Eqs. (1)- (4) and using Eqs. (5)- (7), the perturbed 
equations are given by 

0
'

.q   ,                                                                                   (9) 

0
0

2
2 10

T S

c

'
q ' ' '

p ( T S )g
t

' '
q ( )q

K


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


  




   



    

    ,                (10) 
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2

T

' '
T T' ' ' ' '

( q . )T w T QT
t d

 
 

     


     ,             (11) 

2

S

' '
S S' ' ' '

( q . )S w S
t d

 
 

    


 ,                              (12) 

By operating curl twice-on equation (10), we eliminate 
'p  

from it and then render the resulting equation and the Eqs. 
(11) and (12) dimensionless using the following 
transformations. 

2

' ' ' * * * ' ' ' * * *

T

* ' * ' *

T

( x , y ,z ) ( x , y ,z )d ,(u ,v ,w ) ( / d )(u ,v ,w ),

t t ( d / ),T ( T )T ,S ( S )S



 

 

    
     .                                                                                                  

(13) 

To obtain non-dimensional equations as (on dropping the 
asterisks for simplicity), 

2
2 2 2

2

2 2

1

1
1

1
1

D

T S

D

[( C ) Ta ]w
Pr t z

( C ) ( Ra Ra )
Pr t

 
    

 


     



  ,                (14) 

 

2 0i[ R ( q. )]T w
t


     


             ,                   (15) 

 

21
0( q. )S w

t Le


     


,                                     (16) 

where, 
22 K

Ta ( )



   is the Taylor number and 

2

i TR Qd /   is the internal Raylegh number, and all the 

other non-dimensional parameters are as defined in the 
Nomenclature. 

The boundary conditions are assumed to be stress free, 
isothermal and isohaline, the Eqs. (14)-(16) are to be solved 
for the boundary conditions 

2

2
0

w
w T S

z


   


          at   0 1z ,  .                       (17) 

2. LINEAR STABILITY ANALYSIS 

We predict the thresholds of both marginal and oscillatory 
convections using linear theory. The Eigenvalue problem 
defined by Eqs. (14)- (16) subject to the boundary conditions 
(17) is solved using the time-dependent periodic 
disturbances in a horizontal plane. Assuming that the 
amplitudes of the perturbations are very small, we write  

( w,T ,S ) (W( z ), ( z ), ( z ))exp[i( lx my ) t ]                                       

                                                                                                   (18) 

Where l ,m  are horizontal wavenumbers and   is the 

growth rate. Infinitesimal perturbations of the rest state may 
either damped or grow depending on the value of the 
parameter . Substituting Eq. (18) into the linearized 

version of Eqs. (14)- (16), we obtain 

2 2 2 2 2 2

2 2 2

2 2 2

1

1

1 0

D

T

D

S

D

[( C( D a ) ) ( D a ) TaD ]W
Pr

a Ra ( C( D a ) )
Pr

a Ra ( C( D a ) )
Pr









    

   

    

       ,                   (19) 

2 2
0i[ ( D a ) R ] W          ,                                 (20) 

2 21
0[ ( D a )]

Le
         ,                                      (21) 

Whrere, D d / dz  and 
2 2 2

a l m  . The boundary 

conditions (17) now becomes 

2

2
0

W
W

z
 


   


                           at 0 1z , .         (22) 

We assume the solutions of Eqs. (19)-(21) satisfying the 
boundary conditions (22) in the form 

0 0 0(W( z ), ( z ), ( z )) (W , , )Sin( n z ),                    

1 2 3( n , , ,......)  .                                                                   (23) 

The most unstable mode corresponds to 1n  (fundamental 

mode). Therefore, substituting Eq. (23) with 1n   into Eqs. 

(19)- (21), we obtain a matrix equation 

2 2 2 2 2

0

2

0

2 0

0

1 0 0

01
1 0
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D D D

i

( ) Ta a Ra ( ) a Ra ( )
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  
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  


 

     

   

 

 
 

    
    
       

   
  

                                                                                                                                               

                                                                                                   (24) 

where,  
2 2 2a   . 
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The condition of a non-trivial solution of the above system of 
homogeneous linear Eq. (24) yields the expression of 
thermal Rayleigh number in the form 

2
2

2 2 2 2

2 2

D i

S

D D
T

D

Le Pr ( R )[ ( )
Le

( Ta ( ) ) a ( )Ra ]
Pr Pr

Ra
a ( Le )( Pr )


  

 
   

   

    

    


 

 ,                                                                                                                                                             

                                                                                                   (25) 

2.1 STATIONAR STATE 

For the validity of the principal of exchange of stabilities (i.e., 

steady oscillatory), we have 0   (i.e. 0r i   ) at the 

marginal of stability. Then the Rayleigh number at which the 
marginally stable steady mode exists becomes 

2 2 2 4 2 2

2 2

St i S
T

( R )( Ta a Le Ra )
Ra

a

     

 

  
 ,                                             

                                                                                                   (26) 

In the absence of heat source 0i( i.e.,R ) , Eq. (26) reduces 

to 

2 2 2 2 2

2 2 2

1

1

St

T S

( a ) ( C( a )) Ta ( a )
Ra LeRa

a a ( C( a ))

   



   
  

 
 ,        (27) 

This result exactly coincides with the one given by [17]. 

It is important to note that the critical wavenumber 
St

ca  

depends on the couple stress parameter and Taylor number. 
In the absence of Taylor number 0( i.e.,Ta ) , Eq. (27) 

gives 

2 2 2 2 2

2

1
1

St

T SRa ( a ) [ C( a )] LeRa
a

      ,         (28) 

Which is the result given by [12].  For single component fluid 

0SRa ,  in Eq. (27) gives 

2 2 2 2 2 2 2 2

2 2 2 2

1

1
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T

( a ) ( C( a )) Ta ( a )
Ra

a a ( C( a ))

   



   
 

 
,                           

                                                                                        (29) 

Which is the one obtained by [18]. When 0C  (i.e., 

Newtonian fluid case), Eq. (29) reduces to  

2 2 2 2 2 2

2 2

St

T

( a ) Ta ( a )
Ra

a a

   
  .                            (30) 

This coincides with the results of [24]. Further  0Ta  , 

Eq.(30) gives 

2 2 2

2

St

T

( a )
Ra

a

 
 ,                                                            (31) 

which has the critical value 
2

4
St

TRa   for 
2St

ca   

obtained by [15] and [16]. 

2.2 OSCILLATORY STATE 

We now set ii   in Eq. (25) and clear the complex 

quantities from the denominator, to obtain 

1 2T iRa i     ,                                                                (32) 

Since TRa  is a physical quantity, it must be real. Hence, from 

Eq. (32) it follows that either 0i   or 2 0   ( 0i ,   

oscillatory onset). For oscillatory onset, setting 2 0   

0i( )  gives an expression for frequency of oscillations in 

the form (on dropping the subscript i) 

2 4 2

2

4 2

2 2 2 2 2 2

4 2
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i S
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D S i
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Le ( Pr R )

Pr ( a Le Ra Ta )( Le( R ) )))

Le ( Pr R )

  
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 


  

   


  

                                                                                                                                                 

                                                                                                  (33) 

Now Eq. (32) with 2 0  , gives 

2 2 2 4 2 2

2
4 2 2 2 2 6 4

2 2 2 2 2
2

Osc

T D i S

D i

D

D S i

Ra Pr ( R )( Ta a Le Ra )

Le
w [( Le( Ta ) Pr R )

Pr

Pr ( a LeRa ( Le( R ) ))]w

     

 
     

    

   

    

   

                                                                                                                                                 

                                                                                                  (34) 

The analytical expression for the oscillatory Rayleigh 
number given by Eq. (34) is minimized with respect to the 

wavenumber numerically, after substituting for 
2

0w ( )  

from Eq. (33), for various values of physical parameters in 
order to know their effects on the onset of stationary and 
oscillatory convection. 
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3. RESULT AND DISCUSSION 

The effect of rotation on the onset of double diffusive 
convection (DDC) in a horizontal couple stress fluid 
saturated porous layer with an internal heat source is 
investigated using linear stability analysis. The linear 
stability analysis is based on the classical normal mode 
technique. Only the linear part has considered in this paper. 

The neutral stability curves in the TRa a  plane for various 

parameter values are as shown in Figs.1-6. We fixed the 
values for the parameters except the varying parameter. 
From these figures it is clear that the neutral curves are 
connected in a topological sense. This connectedness allows 
the linear stability criteria to be expressed in terms of the 
critical Rayleigh number T cRa , below which the system is 

stable and unstable above. 

In Fig. 1 the marginal stability curves for different values of 
couple stress parameter C  are drawn. It is observed that 

with the increase of C   the values of Rayleigh number and 

the corresponding wavenumber for oscillatory mode 
decreases while those for stationary mode increases. 
Therefore, the effect of  C  is to advance the onset of 

oscillatory convection while its effect is to inhibit the 
stationary convection.  

Fig. 2 depicts the effect of Taylor number  Ta  on the neutral 

stability curves. We find that the effect of increasing  Ta  is 

to increase the value of the Rayleigh number for stationary 
and oscillatory modes and the corresponding wavenumber. 
Thus the Taylor number  Ta  has a stabilizing effect on the 

double diffusive convection in a horizontal couple stress 
fluid saturated porous layer with an internal heat source. 

Fig. 3 indicates the effect of internal Rayleigh number iR  on 

the neutral stability curves for the fixed values of other 
parameters. It is observed that the value of the Rayleigh 
number for stationary and oscillatory mode increases with 
increasing iR , indicating that the effect of iR  is to inhibit the 

onset of stationary and oscillatory convection. 

In Fig. 4 the marginal stability curves for different values of 
Lewis number Le  are drawn. It is observed that with the 

increase of  Le  the values of Rayleigh number and the 

corresponding wavenumber for oscillatory mode decreases 
while those for stationary mode increases. Therefore, the 
effect of Le   is to advance the onset of oscillatory 

convection while its effect is to inhibit the stationary 
convection.  

Fig. 5 depicts the effect of solute Rayleigh number S Ra  on 

the neutral stability curves for stationary and oscillatory 
modes. We find that the effect of increasing S Ra  is to 

increase the critical value of the Rayleigh number for 
stationary and oscillatory modes and the corresponding 
wavenumber. Thus the solute Rayleigh number S Ra  has a 

stabilizing effect on the double diffusive convection in a 
horizontal couple stress fluid saturated porous layer with an 
internal heat source. 

The effect of normalized porosity parameter   is depicted 

in the Fig. 6. We find that an increase in   decreases the 

minimum of the Rayleigh number for oscillatory mode, 
indicating that the effect of increasing   is to advance the 

onset of oscillatory convection. 
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Fig. 1. Neutral stability curves for differents values of C.

           

(C = 0.2, 0.4, 0.7, 1, 2)

Ra
S
=100,  = 0.7, Ta=100,  R

i
=3, Le=20

Ra
T

a

 

2 4 6 8 10 12
150

300

450

600

750

Ra
S
=100,  = 0.7, 

Ta=100,  R
i
=3, Le=20

Fig. 2. Neutral stability curves for differents values of Ta.

           

Ra
T

a

 Stationary

 Oscillatory

200

100

50

Ta = 10

 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 10 Issue: 02 | Feb 2023              www.irjet.net                                                                         p-ISSN: 2395-0072 

 

© 2023, IRJET       |       Impact Factor value: 8.226       |       ISO 9001:2008 Certified Journal       |     Page 620 
 

1 2 3 4 5 6
200

400

600

800

1000

1200

1400

Ra
S
=100,  = 0.7, Ta=100, C=3, Le=20, 

Fig.3. Neutral stability curves for different values of 

internal Rayleigh number Ri.
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Fig. 5.  Neutral stability curves for different values of 

solute Rayleigh number Ra
S
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5. CONCLUSION 

The effect of rotation on the onset of double diffusive 
convection (DDC) in a horizontal couple stress fluid 
saturated porous layer with an internal heat source is 
investigated using linear stability analysis. The linear 
stability analysis is based on the classical normal mode 
technique. The following conclusions are drawn:  The Taylor 
number  Ta  has a stabilizing effect on the double diffusive 

convection in a horizontal couple stress fluid saturated 
porous layer with an internal heat source.   The  effect  of  

solute  Rayleigh  number SRa  is  to delay both  stationary  
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Fig.6. Neutral stability curves for different values of 
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and   oscillatory  convection.  And the effect   of  Lewis  
number Le  is  to  delay  the  onset  of  stationary convection  

while it advances the oscillatory convection.  The internal 

Rayleigh number iR  has a destabilizing effect on the double 

diffusive convection in a porous medium.  The effect of 
couple stress parameter C  is to advance the onset of 

oscillatory convection whereas its effect is to inhibit the 
stationary onset. The normalized porosity parameter    has 

a destabilizing effect in the case of oscillatory mode. 
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