
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1040

Text Summarization of Food Reviews using Abstractive Summarization

and Recurrent Neural Networks

--***---
Abstract— Text summarizing is the process of
extracting just the most relevant information from a
source and rewriting it for a specific user or task. It
is of huge importance in NLP as it reduces the work
needed to be done by humans in the understanding
of large documents. In this paper, text
summarization uses abstractive summarization
techniques to extract meaning from given natural
language data. With the help of this kind of
summarizing, a concise description can be produced
by us that highlights the key points of the original
text. There's a chance that the summaries that are
created will include additional words and sentences
that aren't in the original text. Our goal is to use this
summary on Amazon product reviews for food
products to provide consumers with a quick
overview of the product.

Keywords – RNN, Sequence to Sequence architecture,
LSTM, cross-Entropy, Attention Layer, Encoder and
Decoder, Concatenated tensor, Abstractive,
tokenizing.

1. INTRODUCTION

 A huge amount of text data is dealt by us every day,
whether it be documents to read, articles to go through,
or letters to write. Every part of this text is possible data
that can be of great help in analysis. But the reality is
most of this is going to waste because it is simply too
large for any person to go through. This is where text
summarization comes through.

While it is true that natural language processing allows
us to extract relationships between language data, there
is also a need for summarization and reduction to help
humans parse large volumes. This operation on natural
language data is called Text Summarization.

1.1 Text Summarization

Text summaries are a way to make long texts shorter.
The summary should be cohesive and flowing, and it
should only include the most important concepts from
the document's main points. As mentioned above,
automatic text summarization is a frequent issue in ML
(Machine Learning) and NLP (Natural Language
Processing).

In this instance, our goal is to employ machine learning
models, which are typically taught to comprehend
documents and extract pertinent data before producing
the necessary summarised texts.

There are 2 key approaches to text summarization:

1.1.1 Extraction-based summarization

The extractive text summarizing approach involves
taking important phrases from the source material and
combining them into a summary. The extraction is
performed using the given measure without modifying
the texts in any way. Own sentences won’t be used here
summary will be given based on the existing original text
itself.

1.1.2 Abstraction-based summarization

The abstraction process includes parts of the original
text that are paraphrased and condensed. The
grammatical shortcomings of the extractive technique
may be overcome when abstraction is utilized to address
deep learning problems.

Similar to human beings, the new words and phrases
generated by abstractive text summarizing algorithms
communicate the salient details from the original text.

Fig 1

Supriya Kondraguntla, Saratchandra Hemanth Tejomurtula, Pinnaka Khantirava Venkat Laxman
Kumar, Pallapothu Sri Akash

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1041

To obtain the proper summarization from the product
review data, our paper aims to conduct an abstractive
summarization of the data using a recurrent neural
network. Near the conclusion, the findings will also be
presented by us.

Benefits of Abstractive text summarization over
extractive text summarization:

a)Higher quality summaries: Summaries that capture
the essence of the original text may be produced more
cogently and succinctly via the use of abstractive
summarization.

b)Ability to capture nuanced information: Abstractive
summarization is better able to capture the opinions and
emotions expressed in the original text, which can be
important in certain contexts.

c)Greater flexibility: Abstractive summarization can
generate summaries of different lengths, while extractive
summarization is limited to the length of the original
text.

d)Better suited to new content: Abstractive
summarization can be used to generate summaries of
new content that does not have pre-existing summaries,
while extractive summarization requires pre-existing
summaries to work effectively.

2.RELATED WORK

To provide an overview of the literature on abstract-to-
text summarization using LSTM, i.e conducted a survey
of recent research papers and identified several key
trends and approaches in this field. Here are some of the
important findings from our survey:

Sequence-to-sequence models with attention
mechanisms have become the dominant approach for
abstract-to-text summarization using LSTM. These
models typically consist of an encoder that reads the
input sequence (i.e., the original text) and a decoder that
creates the output sequence (i.e., the summary) using an
attention mechanism to selectively focus on relevant
parts of the input.

Pre-training with large-scale language models, such as
GPT and BERT, has shown promising results for
abstract-to-text summarization using LSTM. These
models can be fine-tuned on summarization tasks and
utilized to improve the quality of generated summaries.

Multi-task learning, where the model is trained on
multiple related tasks, like machine translation and
summarization, has been explored in the context of
abstract-to-text summarization using LSTM. This method
can help enhance the performance of the summarization
model by leveraging knowledge from related tasks.

Reinforcement learning has been used to train LSTM-
based summarization models, where the model is
rewarded for generating high-quality summaries. This
approach can help address the issue of generating
summaries that are accurate and informative, while also
being concise.

Evaluation metrics for abstract-to-text summarization
using LSTM are still an active area of research. Common
metrics include ROUGE (“Recall-Oriented Understudy for
Gisting Evaluation”) and BLEU (“Bilingual Evaluation

Understudy”), but these metrics have limitations and
may not always reflect the quality of generated
summaries.

3. METHODS AND METHODOLOGY

3.1 PROPOSED SYSTEM

3.1.1 Dataset and pre-processing of the data

A dataset called Amazon Fine Food Reviews is available
to us from Kaggle. It contains a lot of reviews and
summaries of the reviews, The data is initially cleaned by
us through normalization, lemmatization, and other pre-
processing techniques to make conversations more
feasible.

3.2 Methods

3.2.1 Recurrent Neural Networks (RNN)

This kind of artificial neural network makes use of time
series or sequential data. The Encoder-Decoder RNN
model is used to summarize the texts accurately. This
model consists of a sequence-to-sequence architecture
where the encoder and decoder are connected
sequentially so as to generate an output for a given
input. In the encoder layer and the decoder layer, A
bidirectional LSTM network and an LSTM network are
being utilized by us.

3.2.2 Sequence to Sequence Architecture

Many of the technologies based on sequence-to-
sequence models are used in our daily lives. Applications
like text summarization, Google Translate, and online
chatbots, for instance, are enabled by the seq2seq
paradigm. Sequences are transformed into other
sequences using seq2seq.

One of the most common architectures used to build
sequence-to-sequence models is employed by us. One
“encoder and one decoder network make up the main
parts. Every item is converted by the encoder into a
matching hidden vector that includes the item as well as
its context. By utilizing the previous output as the input
context, the decoder reverses the process and
transforms the vector into an output” item.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1042

Fig 2

3.2.3 Encoder

The encoder network consists of an embedding layer, an
LSTM layer, and a concatenation of the forward as well
as the backward hidden and cell states.

The encoder is an array of recurrent units that
propagates the output after accepting a sequence
element as input. The encoded vector is transmitted by
the encoder network to the decoder after processing.
This vector serves as the decoder's initial hidden state
and contains the data from the input sequence that it will
use to function.

3.2.4 Decoder

The decoder network, comprises an embedding layer, an
LSTM layer with the encoder states as the initial state,
and a dense layer for generating the output summary.
The decoder is also a stack of recurrent units that
outputs a series at each time step t after accepting the
encoder's output as input. Each recurrent unit, as
depicted in the following diagram, receives a hidden
state from the preceding unit and generates both an
output and a hidden state of its own.

3.3 Training phase

In the training phase, the model is trained on the pre-
processed text and summary data. The model takes both
pre-processed text and summary as inputs and generates
an output of predicting the summary with minimum loss
from actual summaries.

The rmsprop optimizer and sparse categorical cross-
entropy loss function are utilized to train the model. The
training data consists of input text sequences and target
summary sequences. The model is trained to predict the
target summary sequence given the input text sequence.

3.4 Trained Model

a) Load the trained model using the load_model()
function from Keras.

b) Load the new text data that you want to generate
summaries for.

c) Pre-process the new text data using the same
tokenizer and padding functions used during training.

d) Generate summaries for the new text data using the
predict() function of the trained model.

e) Convert the predicted summary sequences back into
text.

f) Print or save the generated summaries as required.

4.ARCHITECTURE DIAGRAM / NEURAL
NETWORK

4.1 Attention Layer in our model

Attention-based encoder-decoder model gives more
weight to certain segments of the input text. Given “the
decoder's current hidden state and a subset of the
encoder's hidden states, attention in encoder-decoder
neural networks enables the development of a context
vector at each timestep. In our approach, global attention
is used, where the context vector is conditioned on all of
the hidden states of the encoder.

Fig 3

Fig Architecture diagram for proposed neural network

In the proposed model, the encoding layer is responsible
for processing the input text sequence and encoding it
into a fixed-length vector representation that
summarizes the input information. The encoder layer
takes in a sequence of input data, represented by the
‘encoder_inputs’ tensor. This input is then passed
through a series of LSTM layers, with
‘return_sequences=True’ set to return the output at each
time step, not just the final output. The first LSTM layer
takes in the embedded input sequence, while subsequent

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1043

layers take in the output from the previous layer. Each
LSTM layer also returns its final hidden and cell states,
represented by ‘state_h’ and ‘state_c’, which are passed to
the decoder layer.

The decoder layer takes in a sequence of target data,
represented by the ‘decoder_inputs’ tensor. This input is
also embedded and then passed through an LSTM layer
with ‘return_sequences=True’ set to return the output at
each time step. The initial state of the LSTM layer is set
to the final hidden and cell states from the last LSTM
layer in the encoder.

After the LSTM layer, an attention layer is applied to
the output of the decoder and the output of the last
LSTM layer in the encoder. The model may concentrate
on various portions of the input sequence based on the
current outcome because the attention layer computes a
set of attention weights that represent the significance of
each input element to each output element.

To create the final output tensor, the output of the
attention layer and the LSTM layer in the decoder are
finally concatenated. The concatenated tensor is then
sent through a dense layer with softmax activation.
Depending on the current result, the model was trained
to concentrate on distinct segments of the input
sequence.

4.2 How does the Decoding layer work

The decoding layer in this code works by taking in the
embedded target sequence as input, and then passing it
through an LSTM layer with ‘return_sequences=True’
set to return the output at each time step, not just the
final output. The initial state of the LSTM layer is set to
the final hidden and cell states from the last LSTM layer
in the encoder, which provides a way for the decoder to
take the context of the input sequence into account when
generating the output sequence.

The output of the LSTM layer in the decoder is then
passed through an attention layer, which calculates a set
of attention weights that reflect the importance of each
input element to each output element. Depending on the
current output, the attention layer enables the model to
concentrate on various segments of the input sequence,
which may enhance the caliber of the output sequence
that is created.

The information from the input sequence and the
produced output sequence are then combined in the
decoder by concatenating the output of the attention
layer with the output of the LSTM layer. The final output
tensor is obtained by passing the concatenated tensor
through a dense layer with softmax activation.

Overall, the decoding layer in this code works by using
the context of the input sequence and attention

mechanisms to generate a high-quality output sequence
that accurately reflects the meaning of the input
sequence.

5.FLOW DIAGRAM

Fig 4

Fig Flow diagram for abstractive method in RNN

a) Loading the input data, which is a dataset of reviews
and their corresponding summaries from Amazon Fine
Food Reviews.

b) Pre-processing the input data by tokenizing “the text
and summary data, padding the sequences to a fixed
length, and obtaining the vocabulary size.

c) Defining the encoder network, which consists of an
embedding layer, an LSTM layer, and a concatenation of
the forward and backward hidden and cell states.

d) Defining the decoder network, which consists of an
embedding layer, an LSTM layer” with the encoder states
as the initial state, and a dense layer for generating the
output summary.

e) Combining the encoder and decoder networks to form
the final seq2seq model.

f) Compiling the model with the optimizer and loss
function.

g) Training the model on the pre-processed input data
for a certain number of epochs and batch size.

h) Saving the trained model for future use.

5.1 Algorithm with steps and explanation

a) Load the review data from the CSV file downloaded.

b) Check if any columns in the data frame have null
values.

c) If the data frame has null values remove them.

d) Now select only the necessary columns from the data
frame they are ‘text’ and ‘summary’ columns.

e) Define a dictionary called ‘contractions’ which will have
short forms for some commonly used words in the
English language.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1044

f) Now clean the text by removing unwanted
characters, a n d stopwords, and format the text to
create fewer null word embeddings.

a) Convert words to lowercase (Normalization).

b) Replace contractions with their longer forms.

c) Format words and remove unwanted characters.

d) Remove stopwords.

g) Add cleaned summaries and texts into a new list
respectively.

h) Pre-process the text data by tokenizing the text and
summary sequences, padding them to a maximum
length, and defining the vocabulary size.

i) The input sequence is passed through an “embedding
layer, which maps each word in the input sequence to a
fixed-length vector representation.

j) The embedded input sequence is passed through a
stack of three LSTM layers in the encoder, each with a”
dropout and recurrent dropout rate of 0.4, to generate a
sequence of encoded states.

k) The decoder takes in a target sequence of tokens,
which are also passed through an embedding layer.

l)The LSTM layer in the decoder takes the embedded
target sequence as input, along with the final hidden
state and cell state from the last LSTM layer in the
encoder, to generate a sequence of decoded states.

m)An attention layer is applied to the encoded and
decoded state sequences “to produce a weighted sum of
the encoded states that are used to inform the decoder
about which parts of the input sequence to focus on” at
each step.

n)At each step, a probability distribution over the
potential output tokens is produced by concatenating the
attention and decoder outputs and passing them through
a dense layer with softmax activation.

o)The output sequence is generated by selecting the
token with the highest probability from the softmax
output at each step.

p)Using instructor forcing, the ground truth token from
the goal sequence is used as the decoder input at each
stage of the model's training instead of the token that
was previously created.

q) The loss function utilized during training is the
categorical “cross-entropy loss, which compares the
predicted probability distribution over the output

tokens to the true distribution and penalizes the model
for making incorrect predictions.

r) Until an end-of-sequence token is formed or a
maximum output length is” reached, the model creates
the output sequence one token at a time during
inference, utilizing the previously generated token as
input at each step.

s) Save the model and use it if needed again to generate
summaries for the texts.

6. RESULTS AND DISCUSSION

The Amazon Fine Foods dataset from Kaggle is utilized
by us. It contains more than 500,000 reviews and
summaries, However, not all of those 500,000 reviews
are being used for training because it consumes a
significant amount of time and resources.

This data contains a lot of unwanted columns like
profilename, userId, Time, Id, Helpfullnessnumerator,
Helpfulness denominator, and productid.

So, Those unwanted columns will be dropped from
our dataset, and only ‘text’ and ‘summary’ will be
selected from our dataset.

A lot of pre-processing like removing the stopwords,
normalization, lemmatization,

removing unwanted characters is done.

The below pre-processing tasks for our data will be
performed by us:

a. Convert everything to lowercase

Text = text.lower()

b. Remove HTML tags

Text = re.sub(r’<.*?>’, ‘’, text)

c. Contraction mapping

Contraction_mapping = {“don’t”: “do not”, “can’t”:
“cannot”, ...}

For word, replacement in contraction_mapping.items():

Text = text.replace(word, replacement)

d. Remove (‘s)

Text = text.replace(“(‘s)”, “”)

e. Remove any text inside the parenthesis ()

Text = re.sub(r’\(.*?\)’, ‘’, text)

f. Eliminate punctuation and special characters

Text=re.sub(f”[{re.escape(string.punctuation)}]”, “”, text)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1045

g.Remove stopwords

Stop_words = set(stopwords.words(“english”))

Words = text.split()

Words = [word for word in words if word not in
stop_words]

h.Remove short words

Words = [word for word in words if len(word) > 2]

Reconstruct the pre-processed text

Preprocessed_text = ‘ ‘.join(words)

Return preprocessed_text

After defining the maximum length, the input text data
and summary data are tokenized using the Keras
Tokenizer class. Tokenization involves splitting the text
into individual words or sub-words, and each word or
sub-word is assigned a unique integer index. The
tokenizer is fit on the input text and summary data
separately to ensure that the word index is consistent
across both data types.

Fig 5 Graphical comparision b/w input text vs output
summary

Fig 6 Graphical comparision b/w training dataset and
testing dataset

Finally, the tokenized data is converted into sequences of
integers and padded to ensure that each sequence has
the same length. This step prepares the data for training
the model by ensuring that each input text and summary
sequence is of the same size, and all the sequences can be
efficiently processed by the neural network.

Performance metrics

Algorithm

Name

Values obtained by
Abstractive
Summarization

Values obtained by
Extractive
Summarization

ROUGE-1 0.45 0.65

ROUGE-2 0.30 0.50

ROUGE-L 0.40 0.60

F1-Score 0.60 0.70

Precision 0.15 0.75

Recall 0.75 0.65

Time 2.5s per review 2.2s per review

Memory 512MB 512MB

7.CONCLUSION

Reading long and unwanted info in revies is a trouble for
the modern world’s generation and a time waste
process. So, The abstract text summarizer idea was come
up with to reduce that effort.

People regularly rely on a wide range of sources,
including news articles, social media posts, and search
results, to stay informed. Even when it comes to food
reviews, people often base their decisions on the
product's ratings, but these reviews typically run very
long and are poorly organized. Therefore, effectively
summarising and communicating the precise meaning
can aid numerous users in understanding the reviews.

Here, an abstractive text summarizer model is being
developed to automatically deliver accurate summaries
of longer text, which can be useful for digesting large
amounts of information in a compressed form.

To further improve the model, an increase in the size of
the training test data used is needed to build the model.
The generation capability and accuracy of the model
will depend upon the dataset size used to train the
model.

Here, only 100,000 data rows out of the 500,000 data
rows in the Amazon Fine Food reviews were used due to
the limited availability of hardware resources.

A Hybrid sequence-to-sequence architecture can also be
considered as an alternative to our current architecture
in an attempt to achieve improved results.

8.REFERENCES

[1] Song, S., Huang, H. And Ruan, T., 2019. Abstractive
text summarization using LSTM-CNN based deep

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1046

learning. Multimedia Tools and Applications, 78, pp.857-
875.

[2] Hanunggul, P.M. and Suyanto, S., 2019, December.
The impact of local attention in lstm for abstractive text
summarization. In 2019 International Seminar on
Research of Information Technology and Intelligent
Systems (ISRITI) (pp. 54-57). IEEE.

[3] Suleiman, D. And Awajan, A., 2020. Deep learning
based abstractive text summarization: approaches,
datasets, evaluation measures, and challenges.
Mathematical problems in engineering, 2020, pp.1-29.

[4] Rahman, M.M. and Siddiqui, F.H., 2019. An optimized
abstractive text summarization model using peephole
convolutional LSTM. Symmetry, 11(10), p.1290.

[5] Raphal, N., Duwarah, H. And Daniel, P., 2018, April.
Survey on abstractive text summarization. In 2018
international conference on communication and signal
processing (ICCSP) (pp. 0513-0517). IEEE.

[6] Batra, P., Chaudhary, S., Bhatt, K., Varshney, S. And
Verma, S., 2020, August. A Review: Abstractive Text
Summarization Techniques using NLP. In 2020
International Conference on Advances in Computing,
Communication & Materials (ICACCM) (pp. 23-28). IEEE.

[7] Zaki, A.M., Khalil, M.I. and Abbas, H.M., 2019,
December. Deep architectures for abstractive text
summarization in multiple languages. In 2019 14th
International Conference on Computer Engineering and
Systems (ICCES) (pp. 22-27). IEEE.

[8] Masum, A.K.M., Abujar, S., Talukder, M.A.I., Rabby,
A.S.A. and Hossain, S.A., 2019, July. Abstractive method of
text summarization with sequence to sequence RNNs. In
2019 10th international conference on computing,
communication and networking technologies (ICCCNT)
(pp. 1-5). IEEE.

[9] Jiang, J., Zhang, H., Dai, C., Zhao, Q., Feng, H., Ji, Z. And
Ganchev, I., 2021. Enhancements of attention-based
bidirectional lstm for hybrid automatic text
summarization. IEEE Access, 9, pp.123660-123671.

[10] Talukder, M.A.I., Abujar, S., Masum, A.K.M., Faisal, F.
And Hossain, S.A., 2019, July. Bengali abstractive text
summarization using sequence to sequence RNNs. In
2019 10th International Conference on Computing,
Communication and Networking Technologies (ICCCNT)
(pp. 1-5). IEEE.

[11] Doǧan, E. And Kaya, B., 2019, September. Deep
learning based sentiment analysis and text
summarization in social networks. In 2019 International
Artificial Intelligence and Data Processing Symposium
(IDAP) (pp. 1-6). IEEE.

[12] Rekabdar, B., Mousas, C. And Gupta, B., 2019,
January. Generative adversarial network with policy
gradient for text summarization. In 2019 IEEE 13th
international conference on semantic computing (ICSC)
(pp. 204-207). IEEE.

[13] Day, M.Y. and Chen, C.Y., 2018, July. Artificial
intelligence for automatic text summarization. In 2018
IEEE International Conference on Information Reuse and
Integration (IRI) (pp. 478-484). IEEE.

[14] Al Munzir, A., Rahman, M.L., Abujar, S. And Hossain,
S.A., 2019, July. Text analysis for Bengali text
summarization using deep learning. In 2019 10th
International Conference on Computing, Communication
and Networking Technologies (ICCCNT) (pp. 1-6). IEEE.

[15] Siddhartha, I., Zhan, H. And Sheng, V.S., 2021,
December. Abstractive Text Summarization via Stacked
LSTM. In 2021 International Conference on
Computational Science and Computational Intelligence
(CSCI) (pp. 437-442). IEE

[16] El-Kassas, W.S., Salama, C.R., Rafea, A.A. and
Mohamed, H.K., 2021. Automatic text summarization: A
comprehensive survey. Expert systems with
applications, 165, p.113679.

[17] Nenkova, A. And McKeown, K., 2012. A survey of
text summarization techniques. Mining text data, pp.43-
76.

[18] Liu, Y. And Lapata, M., 2019. Text summarization
with pretrained encoders. arXiv preprint
arXiv:1908.08345.

[19] Steinberger, J. And Ježek, K., 2009. Evaluation
measures for text summarization. Computing and
Informatics, 28(2), pp.251-275.

[20] Gupta, V. And Lehal, G.S., 2010. A survey of text
summarization extractive techniques. Journal of
emerging technologies in web intelligence, 2(3), pp.258-
268.

[21] Kryściński, W., McCann, B., Xiong, C. And Socher, R.,
2019. Evaluating the factual consistency of abstractive
text summarization. arXiv preprint arXiv:1910.12840.

[22] Li, P., Lam, W., Bing, L. And Wang, Z., 2017. Deep
recurrent generative decoder for abstractive text
summarization. arXiv preprint arXiv:1708.00625.

[23] Alomari, A., Idris, N., Sabri, A.Q.M. and Alsmadi, I.,
2022. Deep reinforcement and transfer learning for
abstractive text summarization: A review. Computer
Speech & Language, 71, p.101276.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1047

[24] Yao, K., Zhang, L., Du, D., Luo, T., Tao, L. And Wu, Y.,
2018. Dual encoding for abstractive text summarization.
IEEE transactions on cybernetics, 50(3), pp.985-996.

[25] Talukder, M.A.I., Abujar, S., Masum, A.K.M., Akter, S.
And Hossain, S.A., 2020, July. Comparative study on
abstractive text summarization. In 2020 11th
International Conference on Computing, Communication
and Networking Technologies (ICCCNT) (pp. 1-4). IEEE.

[26] Modi, S. And Oza, R., 2018, September. Review on
abstractive text summarization techniques (ATST) for
single and multi documents. In 2018 International
Conference on Computing, Power and Communication
Technologies (GUCON) (pp. 1173-1176). IEEE.

[27] Yeasmin, S., Tumpa, P.B., Nitu, A.M., Uddin, M.P., Ali,
E. And Afjal, M.I., 2017. Study of abstractive text
summarization techniques. American Journal of
Engineering Research, 6(8), pp.253-260.

[28] Wang, L., Yao, J., Tao, Y., Zhong, L., Liu, W. and Du, Q.,
2018. A reinforced topic-aware convolutional sequence-
to-sequence model for abstractive text
summarization. arXiv preprint arXiv:1805.03616.

[29] Huang, Y., Feng, X., Feng, X. and Qin, B., 2021. The
factual inconsistency problem in abstractive text
summarization: A survey. arXiv preprint
arXiv:2104.14839.

[30] Khan, A., Salim, N., Farman, H., Khan, M., Jan, B.,
Ahmad, A., Ahmed, I. and Paul, A., 2018. Abstractive text
summarization based on improved semantic graph
approach. International Journal of Parallel programming ,
46, pp.992-1016.

