

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 210

Impact of System Constraints on the Performance of Constraint Solvers

in Optimizing the Schedules through Algorithm Choices

Abstract— In the realm of combinatorial
optimization, the efficiency and effectiveness of
constraint solvers play a pivotal role in resolving
complex scheduling problems. Solving these problems
requires solver engines which require heavy
computational power. Constraint solvers are a unique
approach to solving these scheduling problems. This
research delves into the intricate interplay between
system constraints and the performance of constraint
solvers when applied to the task of optimizing
schedules, with a particular emphasis on the impact of
algorithm choices. The primary objective of this study
is to explore system-level limitations, including
memory allocation, to enhance constraint solver
performance and provide insights for strategies.
Empirical investigation focuses on designing
experiments showcasing system constraints on
scheduling problems, analyzing sensitivity to
constraints using various optimization solvers, and
measuring solution quality, convergence rate, and
resource consumption. This research reveals the
dynamic interplay between system constraints and
system-level limitations in combinatorial
optimization, guiding practitioners and researchers in
algorithmic choices, strategy adjustments, and
resource allocations for complex scheduling problems.

Keywords—Constraint Solvers, Optimizing Schedules,
System Constraints, Scheduling problems.

I. INTRODUCTION

Constraint satisfaction has become a key paradigm in the
fields of optimization and computational problem-solving
for handling challenging real-world issues. The use of
constraint solvers, specialized software tools made to
locate workable solutions within the bounds of preset
constraints, is essential in a variety of fields, including
manufacturing, project management, artificial intelligence,
and scheduling. Schedule optimization, particularly when
combined with method selection, stands out as a
fundamental issue in this field, as the interaction between
system restrictions and solver performance assumes
utmost significance [2].

Across many industries, it is crucial to allocate time,
resources, and responsibilities effectively. The objective is
always the same, regardless of whether the activity at hand
is managing computing workloads in data centers or
scheduling tasks in manufacturing plants or coordinating

supply chain activities. Attaining optimal resource use
while following a variety of limitations [3]. These problems
can be approached methodically with the help of
constraint solvers, which are powered by complex
algorithms. However, as systems and tasks become more
complicated, the restrictions placed on constraint solvers
have a significant impact on their capacity to move through
complex constraint landscapes.

The relationships between system restrictions and
constraint solver performance in this situation call for
careful investigation. System limitations cover a wide
range of elements, such as the structure of the particular
issue instance, available computational resources, memory
accessibility, and processor capacity. As projects develop
or new requests materialize, these restrictions, which are
fundamentally dynamic, may change. Therefore, it is
essential to understand how changes in these system
restrictions affect how well constraint solvers perform in
order to develop techniques that result in reliable and
effective solutions [4].

An additional level of complexity is added by algorithm
selection, a key component of this research. The solver's
capacity to maneuver through the search space of potential
solutions might be considerably impacted by the algorithm
they use. Others may be better at handling complicated
constraint relationships but require more processing
power, while some algorithms may perform better in
settings with constrained computational resources but fall
short when presented with complex issue structures.
Consequently, the interaction between system limitations,
algorithm choice, and solver performance creates a
multidimensional conundrum that merits careful
examination.

In the context of optimizing schedules through algorithm
selection, this study sets out on a quest to understand the
complex relationship between system constraints and the
effectiveness of constraint solvers [5].

The goal of this work is to examine this complex interplay
in order to get insights that will not only advance
theoretical knowledge but also provide practitioners with
practical information for overcoming the difficulties
presented by actual optimization scenarios. This study
aims to add to the expanding corpus of theoretical
understanding that supports successful constraint
satisfaction and optimization strategies using a
combination of empirical analysis, algorithmic
investigation, and theoretical inquiry.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 11 | Nov 2023 www.irjet.net p-ISSN: 2395-0072

S.M.Suriyaarachchi, Wickramarathna W.A.Y.A, Senanayake H.R.U.D, Bandara D.M.T.D

--***---

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 11 | Nov 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 211

The following parts will examine the pertinent literature,
lay out the theoretical underpinnings, explain the study
methods, provide the results, and finally summarize the
consequences of our inquiry [6]. With this extensive
project, we hope to provide light on the complex dynamics
regulating how system constraints affect constraint solver
effectiveness, particularly when complex choices of
algorithm are involved.

II. LITERATURE REVIEW

From manufacturing and transportation to project
management and computer systems, scheduling
optimization is a challenging problem that affects a wide
range of businesses. Constraint solvers have become a
powerful tool for navigating the complex landscape of
constraints that are inherent in scheduling as a result of
the major evolution of the computational approaches used
to address these problems [7]. This study of the literature
examines the state-of-the-art regarding the complex
interaction between system constraints, algorithmic
decisions, and the efficiency of constraint solvers when
used to optimize schedules. This study examines previous
studies in an effort to provide light on the complex
interactions that affect how efficient and successful these
solutions are.

2.1 Algorithm Choices and Solver Performance

In order to constraint solvers to be efficient and effective in
tackling schedule optimization problems, the choice of
suitable algorithms is crucial. The choice of algorithm is an
important factor in the performance of solvers because
different algorithms exhibit different strengths and
weaknesses. Scheduling issues have been tackled by
methods including constraint programming, mixed integer
programming, and heuristic approaches, each of which
targets a different part of the issues. For example, mixed
integer programming excels at capturing complex
dependencies inside scheduling issues, whereas constraint
programming provides a flexible framework for modeling
sophisticated constraints [8]. The choice of algorithm must
be carefully considered based on the nature of the problem
and the constraints imposed.

2.2 System Constraints and Solver Behavior

When used in scheduling optimization, system constraints
cover a range of elements that affect how constraint
solvers behave [1]. These limitations include the amount of
computational capacity, the amount of memory, the
processing speed, and the difficulty of the particular issue
instance. The performance and behavior of the solver are
greatly influenced by the availability of computational
resources, according to research. When resources are
limited, solvers adapt by using techniques like branch
pruning or heuristic-guided search to reduce runtime [9].
Additionally, problem-specific restrictions like time frames
and interaction between orders of precedence have a

significant impact on solver efficiency. Research has looked
on the dynamic adaptation of solver algorithms to various
system constraints, enabling more efficient schedule
optimization.

2.3 Domain-Specific Applications

The application of constraint solvers in optimizing
schedules is not limited to a single domain but spans a
wide range of applications [10]. For instance, constraint
programming has been used to effectively manage task
allocation in work task scheduling, where tasks need to be
assigned to available resources while conforming to
certain constraints. Similar to this, technician dispatching
involves assigning technicians to service tasks depending
on variables including location, skill level, and time
limitations. In a variety of disciplines, researchers have
looked into the use of constraint solvers to address these
difficult problems.

2.4 Solver Performance Analysis

To evaluate the effectiveness of various constraint solvers
in particular scheduling scenarios, numerous empirical
studies have been carried out. Comparative analyses of
mixed integer programming solvers SCIP and CBC against
Optaplanner and MiniCP have revealed information about
their effectiveness and applicability for various problem
types. Researchers and practitioners can learn how
different solvers perform under various system constraints
by using these assessments, which often quantify
characteristics like solution quality, runtime, and
scalability. When choosing solvers and algorithms for
particular schedule optimization tasks, these evaluations
help provide the empirical groundwork for wise choices.

By focusing on these aspects, this work hopes to add to the
corpus of knowledge that supports efficient constraint
satisfaction and optimization procedures in real-world
settings.

III. METHODOLOGY

The challenging issue of dispatch scheduling is to assign
tasks to personnel or vehicles while reducing resource
utilization and achieving objectives. MIP, or mixed-integer
programming, is a useful technique for handling this
problem. MIP assigns tasks to resources, uses binary
variables to describe job start and finish times, and
represents the dispatch scheduling problem as a
mathematical optimization problem. The goal of the
objective function is to shorten the total amount of time
required to finish all jobs. The MIP solver looks at different
combinations of task-resource allocations and start
timings to determine the optimum solution. These
approaches include cutting plane and branch and bound
algorithms. In conclusion, MIP optimizes resource
allocation and task completion by solving dispatch

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 11 | Nov 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 212

scheduling as a mathematical optimization problem using
decision variables, constraints, and algorithms.

Research goals, tasks, and resources must be defined,
constraints must be taken into account, and the efficiency
of MIP solvers must be evaluated when conducting a MIP
for dispatch scheduling project. By selecting benchmark
problems and adjusting parameter settings, an experiment
may be built to assess the efficacy of several MIP solvers. It
is crucial to use the right software tools, create software to
develop benchmark problems and assess results, and
create scripts to execute MIP solvers and gather
performance information. The experiment is then carried
out, data from each solver is collected, and the results are
analyzed to gauge their efficacy. Understanding the MIP
solver's performance can be accomplished by analyzing
how it approaches the dispatch scheduling issue.

3.1 Reverse Engineering in Detail

In MIP, reverse engineering is looking at the solution
process of a solver to comprehend its constraints,
algorithms, and functions. It is critical to take
confidentiality laws and intellectual property rights into
account. It is crucial to secure the owner of the software's
permission in order to protect a company's intellectual
property rights. Open-source MIP solvers that are
unrestricted by intellectual property laws can overcome
ethical problems and make the study's results
reproducible and verifiable by other researchers.

3.2 Data Gathering and Analysis

The efficiency of MIP solvers and dispatch scheduling
issues can be evaluated through experiments and reverse
engineering techniques using data analysis tools like
Microsoft Excel. These resources offer summary statistics
and aid in the organization of experimental data. Python is
a powerful tool for data analysis, but it must take data
security and privacy concerns into account. Before
distributing the data, it is imperative to delete any
sensitive or private information.

Mixed integer programming (MIP) is a potent method for
job scheduling that optimizes work allocation, minimizes
time, and lowers costs. MIP solvers can be used in many
different industries because of their adaptability and
versatility. In addition to defining the study question and
creating the experimental design, researchers also need to
run MIP solvers, monitor performance metrics, and
conduct results analysis. Researchers can learn a lot about
the performance of MIP solvers and boost task scheduling
effectiveness by performing experiments, analyzing data,
and taking ethical considerations into account.

Using cutting-edge methods like branch-and-bound,
branch-and-cut, and heuristics, the experiment evaluates

the performance of MIP solvers in actual optimization
situations.

MIP uses a mathematical optimization library to
implement above mentioned methods, these include
Gurobi or open-source libraries such as SCIP. The main
solving process of SCIP is depicted in Fig. 1.

Another method of solving scheduling problems is by using
Constraint Programming (CP) solvers. It is another
effective method that can be utilized to solve dispatch
scheduling issues. A summary of the underlying flow of a
CP solver is depicted in Fig. 2.

Constraint propagation refers to the process of reducing
the domains of variables by applying constraints and their
associated techniques [11]. Constraint propagation plays
an integral role in narrowing down the search space and
finding solutions efficiently.

The experiment analyzes system settings, constraints,
variables, and algorithms to assess the performance of
constraint solvers in Work task scheduling applications.
With input variables and limitations created to closely
resemble real-world events, the experiment can be carried
out either manually or automatically. Data collection
options are chosen throughout the design phase, and

Fig. 1. Flow Graph of the main solving loop of SCIP

Fig. 2. Constraint programming flow

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 11 | Nov 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 213

pandas and Python Jupiter workspaces are used for
analysis.

The design of the experiment variables, and definition of
the outputs and outcomes will occur once the research
objectives and limitations have been established. A
detailed experiment plan, comprising a specific hypothesis,
a list of required supplies and tools, a step-by-step
technique, and a strategy for data collecting, will be
created.

Data collection will be dependable, accurate, and valid
since the experiment will be carried out in accordance with
the concept and plan. The data will be analyzed, and
findings and suggestions will be made on how to make
Work task schedulers more effective and efficient when
used with limitations.

3.3 Artifact

Agile method will be used to develop the Artifact or the
system. Existing open-source software’s or libraries with
licenses are integrated to the artifact depending on its
requirements. The research findings and suggestions will
be constantly applied to improve the artifact. The artifact
includes two separate APIs, a solver engine, and an
interface for the end-users.

By utilizing input data, skill sets, and scheduling
constraints, dispatching schedules are computer programs
that optimize resource allocation and operational
efficiency. The allocation of tasks or jobs to available
resources, such as persons, vehicles, and equipment, is
done using these restrictions. For scheduling purposes, the
system considers job requests, location, and skill sets. In
order to decrease downtime and raise service levels, the
dispatching schedule generates a schedule or dispatch plan
based on input data and constraints that can be changed in
real-time.

The dispatch scheduler method uses a constraint solver to
organize and structure input data, check constraints for
conflicts, and prioritize constraints using heuristics or
rules. The solver creates a list of alternative solutions and
evaluates each one in light of the analysis and resolution of
conflicts. Utilizing optimization strategies, the best answer
is found. The answer is subsequently delivered, typically in
the form of a list, report, or graphic representation.
Resource allocation, scheduling, logistics, and optimization
can all benefit from this powerful tool.

3.4 Experiment

The experiment intends to collect information on
constraint solver performance in Dispatcher scheduling
applications. A data sheet (ex: csv) is used to hold the
gathered data, which can be collected manually or
automatically. The data sheet is analyzed using Pandas

data science tools and Python Jupiter workspaces. The
study considers system settings, underlying algorithms,
constraints, and variables. With careful regard for the
system environment, the experiment can be run manually
or automatically.
The steps of an experiment include setting research goals,
designing the experiment, identifying obstacles, creating
an experiment plan, carrying out the experiment, assessing
the results, and coming to conclusions and making
suggestions. These suggestions can be utilized to enhance
the scheduler's functionality and utilization, thus
maximizing its efficiency.

3.5 Reverse Engineering Approach

An effective way to learn about the underlying algorithms
and performance traits of constraint solvers is by reverse
engineering. To begin reverse engineering, one must first
become familiar with the operation and intended
application of the solver, study the documentation, and
utilize the solver to become familiar with its capabilities.
Next, locate crucial data structures and algorithms for
resolving restrictions like data flow and source code.
Benchmarking the solver on multiple input data sets will
allow you to examine performance traits like time and
memory needs. Try modifying and optimizing the solver to
boost performance or fit it to new applications.

Reverse engineering may give rise to moral questions
about things like privacy rights, intellectual property rules,
and potential security holes in systems or products. It is
essential to make sure that the reverse engineering
technique respects privacy, avoids exploitation of
weaknesses, and does not violate intellectual property
rights. Furthermore, it is crucial to prevent the illicit
duplication of products without permission. All things
considered, reverse engineering is a difficult process that
necessitates a profound comprehension of the solver's
algorithms, data structures, and performance
characteristics.

The research's technique is set up to systematically
address the main research question, which is how system
constraints affect constraint solver performance while
scheduling optimization using various algorithms. The
following steps and secondary goals make up the
methodology:

Work task scheduling (WTS) and technician dispatching
(TD) are the two scheduling domains that are being
studied in detail in the first step, which is to identify the
domain variables and constraints. To appropriately reflect
the scheduling issues, domain variables that include both
hard and soft constraints will be found. While soft
constraints allow for flexibility in optimization, hard
constraints set forth non-negotiable requirements.
Documentation of pertinent restrictions, such as job

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 11 | Nov 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 214

dependencies, resource availability, and time windows,
will be done.

Using Mechanisms for Reverse Engineering to Find
Underlying Algorithms By selecting Optaplanner and
MiniCP as the constraint solvers, this stage tries to reveal
the fundamental methods employed by each. The core
algorithmic techniques used by these solvers will be
determined using a mix of technical documentation
analysis, published literature analysis, and, if accessible,
source code analysis. Understanding how algorithmic
elements affect solver behavior requires this realization.

Investigating the Use of Constraint Programming in
Related Applications: To accomplish this goal, a thorough
investigation of the use of constraint programming in
related applications other than schedule optimization will
be carried out. To comprehend how easily constraint
programming techniques may be adapted and used in a
variety of contexts, relevant academic material, case
studies, and actual implementations will be examined.
These scenarios' insights will help develop a more
comprehensive understanding of constraint
programming's use.

Analyzing the Performance of Selected Constraint Solvers:
In this stage, empirical experiments are carried out to
assess the effectiveness of the selected constraint solvers
while taking into account various system constraints. Work
task scheduling (WTS) and technician dispatching (TD) are
the two identified scheduling domains where the
experiment will be run, these domains are shown in fig. 3.
Constraint programming (Optaplanner and MiniCP) and
mixed integer programming (SCIP and CBC) solver
categories will be evaluated.

3.6 Specific Case Methodology:

Work Task Scheduling (WTS): Use Optaplanner and
MiniCP to provide constraint programming for WTS

instances. Use SCIP and CBC to implement mixed integer
programming for the same cases. System restrictions like
computational capacity and task difficulty should be
adjusted systematically. Analyze and contrast the runtime
effectiveness, scalability, and solution quality of each
solver under various constraint circumstances.

Utilize MiniCP and Optaplanner to apply constraint
programming to instances of Technician Dispatching (TD).
Implement mixed integer programming for identical
instances using SCIP and CBC. Introduce various system
constraints, such as geographic conditions and technician
accessibility. Across various solvers and constraint
changes, gauge and assess the solution quality, runtime
effectiveness, and scalability. This methodology is used in
the research in order to provide a thorough understanding
of how different system constraints interact with
constraint solvers while optimizing schedules with
algorithmic options. The results of these tests will shed
light on how solver performance, algorithm choice, and the
limitations imposed by the problem and the computer
environment are intertwined. The ultimate goal of this
research is to provide practitioners with insightful
information that will help them decide wisely in situations
when schedule optimization is being used in the real
world.

IV.RESULT AND DISCUSSION

Important conclusions were drawn from the examination
of how system constraints affect the efficiency of
constraint solvers during schedule optimization. The study
used the solvers OptaPlanner and MiniCP for CP and SCIP
and CBC for MIP, focusing on two well-known paradigms,
Constraint Programming (CP) and Mixed Integer
Programming (MIP).

4.1 Solver Performance Across System Constraints

Solvers for Constraint Programming (CP): OptaPlanner
showed sensitivity to system constraints, with its
performance changing as a result of the introduced
constraints. OptaPlanner delivered reliable high-quality
solutions with a variety of algorithm configurations when
the system resources were plentiful. OptaPlanner's
runtime did, however, significantly increase when
constraints grew, particularly when CPU availability was
constrained. Comparing global search algorithms to local
search-based algorithms, the impact on solution quality
was more pronounced for the former.

MiniCP behaved similarly to OptaPlanner, performing well
under conditions with few constraints. MiniCP's runtime
increased as system limitations grew more severe, albeit
more slowly than with OptaPlanner. Across a range of
algorithm configurations, the solver maintained a largely
constant level of solution quality, with local search-based
algorithms proving more resilient to limitations.

Fig. 3. Problem domains

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 11 | Nov 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 215

When subjected to system limitations, Mixed Integer
Programming (MIP) Solvers such as SCIP showed
noticeable performance variations. As constraints were
added, its runtime considerably grew, especially when
dealing with complex problem situations. Additionally, the
quality of solutions declined, particularly as there were
more variables and restrictions to consider. SCIP's
performance was significantly impacted by limited
computational resources, particularly memory. In contrast
to SCIP, CBC behaved differently because it was more
capable of adjusting to system limitations. CBC maintained
more competitive performance across numerous
scenarios, although still being impacted by restrictions.
Because of its heuristics and branching techniques, it was
better able to manage memory and CPU limitations, which
reduced the impact on runtime and solution quality.

4.2 Algorithm Sensitivity to System Constraints

OptaPlanner and MiniCP both showed algorithm-specific
sensitivity to system limitations, these solvers are known
as constraint programming solvers (CP-solvers). In limited
settings, local search algorithms typically outperformed
global search algorithms with less noticeable runtime and
solution quality erosion. This pattern indicates a better
degree of adaptation to constrained computational
resources in local search algorithms.

In Mixed Integer Programming (MIP) solvers, system
restrictions had an impact on the performance of SCIP and
CBC, with CBC showing higher resilience under some
circumstances. Because of its heuristic-driven
methodology and branching tactics, CBC was able to
sustain competitive performance even with limited
resources. The potential benefits of some MIP solvers in
comparison with constrain solvers are highlighted by this
research.

The findings highlight the complex interaction between
solver performance, system restrictions, and algorithmic
choices in schedule optimization. In both the CP and MIP
paradigms, local search-based algorithms performed
better when subjected to system restrictions. This is in line
with the fundamental characteristics of local search
algorithms, which emphasize gradual advancements and
can adjust to changing resource availability. The
adaptability of local search methods suggests that they are
appropriate for use in practical settings where
computational resources may be limited.

While global search algorithms performed worse when
subjected to restrictions, CBC, a MIP solver, demonstrated
the ability of MIP solvers to handle such situations
successfully. By balancing exploration and exploitation,
CBC was able to deliver competitive performance even
when system resources were constrained. The results
highlight the significance of choosing an algorithm
depending on the features of the problem and the

availability of resources. When attempting to balance
solution quality and runtime efficiency, practitioners
should take into account the unique algorithmic strategies
and the available computational resources.

V.CONCLUTION

Investigation was how system limitations affected
constraint solver performance during schedule
optimization. Using the solvers OptaPlanner, MiniCP, SCIP,
and CBC, two well-known paradigms, Constraint
Programming (CP) and Mixed Integer Programming (MIP),
were investigated. The study provided insightful
information on the interactions between system
constraints and algorithmic decisions that influence solver
performance. The investigations showed that solver
behavior changed depending on the severity of the system
restrictions. Compared to global search algorithms, local
search-based algorithms regularly demonstrated stronger
ability to adapt to limited resources. As constraints became
more severe, these local search techniques maintained
more consistent solution quality and runtime efficiency.
More study is needed in other paradigms such as Linear
Programming, Evolutionary Algorithms, Gradient-based
optimization etc. and their solvers.

IV. REFERENCES

[1] E Smith, J Frank, AK Jónsson, "Bridging the gap
between planning and scheduling," The Knowledge
Engineering Review, vol. 15, no. 01, pp. 47-83, 2000.

[2] D Hellmanns, L Haug, M Hildebrand, F Dürr, "How to
optimize joint routing and scheduling models for TSN
using integer linear programming," in 29th
International Conference on Real-Time Networks and
Systems, 2021.

[3] Kotthoff, Lars, "Algorithm selection for combinatorial
search problems: A survey," Data mining and
constraint programming: Foundations of a cross-
disciplinary approach, pp. 149-190, 2016.

[4] M Malawski, G Juve, E Deelman, J Nabrzyski,
"Algorithms for cost-and deadline-constrained
provisioning for scientific workflow ensembles in IaaS
clouds," Future Generation Computer Systems, vol. 48,
pp. 1-18, 2015.

[5] S Kadioglu, Y Malitsky, A Sabharwal, "Algorithm
selection and scheduling," in Principles and Practice of
Constraint Programming–CP 2011: 17th International
Conference, Perugia, 2011.

[6] PE Bailey, A Marathe, DK Lowenthal, "Finding the
limits of power-constrained application
performance," in Proceedings of the International
Conference for High Performance Computing,
Networking, Storage and Analysis, 2015.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 11 | Nov 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 216

[7] Y Hamadi, E Monfroy, F Saubion, What is autonomous
search?, Springer, 2011.

[8] K Smith-Miles, L Lopes, "Measuring instance difficulty
for combinatorial optimization problems," Computers
& Operations Research, vol. 39, pp. 875-889, 2012.

[9] HE Sakkout, M Wallace, "Probe backtrack search for
minimal perturbation in dynamic scheduling,"
Constraints, vol. 04, pp. 359-388, 2000.

[10] O Alsac, J Bright, M Prais, B Stott, "Further
developments in LP-based optimal power flow," IEEE
Transactions on Power Systems, vol. 5, no. 3, pp. 697-
711, 1990.

[11] F. Rossi, P. Van Beek, T. Walsh, Handbook of
constraint programming, Elsevier, 2006.

