

 Private Cloud Monitor

M.V.Ramana 1, T.D.Bhavani 2, D.Rajitha3, M.Sumasri 4, T.Prasad 5, V.B.S.Ratna 6

1Associate Professor, 2,-6Students B.Tech. Computer Science Engineering,
V. S. M. College of Engineering, Ramachandrapuram, A.P, India

--***--
Abstract - Authorization is an important security concern in
cloud computing environments. It aims at regulating an
access of the users to system resources. A large number of
resources associated with Rest APIs typical in cloud make an
implementation of security requirements challenging and
error prone. To alleviate this problem, in this paper we
propose an implementation of security cloud monitor. We
rely on model- driven approach to represent the functional
and security requirements. Models are then used to generate
cloud monitors. The cloud monitors contain contracts used to
automatically verify the implementation. We use Django web
framework to implement cloud monitor and Open Stack to
validate our implementation.

I. INTRODUCTION

 In many companies, private clouds are considered to be
an important element of data centre transformations. Private
clouds are dedicated cloud environments created for the
internal use by a single organization [20]. According to the
Cloud Survey 2017 [3], private clouds are adopted by 72% of
the cloud users, while the hybrid cloud adoption (both public
and private) accounts for 67%. The companies, adopting
private clouds, vary in size from 500 to more than 2000
employees. Therefore, designing and developing secure
private cloud

Environments for such a large number of users constitute a
major engineering challenge.

 Usually, cloud computing services offer REST APIs
(Representational State Transfer Application Programming
Interface) to their consumers. REST APIs, e.g., AWS[1],
Windows Azure , Open Stack , define software interfaces
allowing for the use of their resources in various ways. The
REST architectural style exposes each piece of information
with a URI, which results in a large number of URIs that can
access the system. Data breach and loss of critical data are
among the top cloud security threats . The large number of
URIs further complicates the task of the security experts, who
should ensure that each URI, providing access to their

system, is safeguarded to avoid data breaches or privilege
escalation attacks.

 Since the source code of the Open Source clouds is
often developed in a collaborative manner, it is a subject of
frequent updates. The updates might introduce or remove a
variety of features and hence, violate the security properties of
the previous releases. It makes it rather unfeasible to manually
check correctness of the APIs access control implementation

II. PRIVATE CLOUDS WITH REST PRINCIPLES

Cloud computing promises to improve agility, achieve
scalability, and shorten time to market [27] of software
development. This vision relies on the use of REST APIs,
which enable extensibility and scalability of any cloud
framework. To facilitate extensibility, REST APIs expose
their functionality as resources with unique Uniform
Resource Identifiers (URIs). In complex systems, like the
cloud frameworks, this results in a large number of URIs.
Since the same set of HTTP methods (GET, PUT, POST, and
DELETE) can be invoked on them, with different
authorization rules, safeguarding such a large number of URIs
is a challenging task. For example, let us consider a volume
resource that is offered by the Cinder API of Open Stack [8].
Cinder is one of the services that is a part of the modular
architecture of Open Stack. It provides storage resources
(volume) to the end users, which can be consumed by the
virtual servers [8]. A volume is a detachable block storage
device that acts like a hard disk. Cinder API exposes the
volume resource via (/{projected}/volumes/).

Any user of the project (e.g., project administrator, service
architect or business analyst) with the right credentials can
invoke the GET method on volume to learn its details.
However, only the project administrator and service
architect can update the existing volumes or add new
volumes, and only the project administrator can delete a
volume.

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 214

International Conference on Recent Trends in Engineering & Technology- 2023 (ICRTET-3)

 Organised by: VSM College of Engineering, Ramachandrapuram

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Special Issue: | Apr 2023 www.irjet.net p-ISSN: 2395-0072

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Special Issue: | Apr 2023 www.irjet.net p-ISSN: 2395-0072

To offer scalability, REST advocates the stateless
interaction between the components. This allows the REST
services to cater to a large number of clients. Without
storing the state between the requests, the server frees
resources rather quickly that ensures system scalability.
However, to construct the advanced scenarios using a
stateless protocol, we should enforce a certain sequence of
steps to be followed. Hence, we can treat such a behavior as
a state full one, where the response to a method invocation
depends on the state of the resource. For example, a POST
request from the authorized user on the volumes resource
would create a new volume resource if the project has not
exceeded its share of the allowed volumes, otherwise it will
not be created. Similarly, a DELETE request on the volume
resource by an authorized user would delete the volume if
it were not attached to any instance, otherwise it would be
ignored.

III. CLOUD MONITORING FRAMEWORK

Figure 1 presents the overall architecture of the Cloud
Monitoring Framework. A cloud developer uses IaaS to
develop a private cloud for her/his organization that would
be used

Fig. 1.Architecture of the Cloud Monitoring Framework

By different cloud users within the organization. In some
cases, this private cloud may be implemented by a group of
developers working collaboratively on different machines.
The REST API provided by IaaS is used to develop the private
cloud according to the specification document and required
security policy.

The cloud monitor is implemented on top of the private
cloud. The main original components of our work are
highlighted as grey boxes in Figure 1. The security analyst
develops the required design models based on the
specification document and security policies. These models
define the behavioural interface for the private cloud and
specify its functional and security requirements.

A. Workflow

Fig. 2. Workflow in Cloud Monitor (CM)

Our cloud monitor acts as a proxy interface on top of the
private cloud implementation. It interprets the response codes
of different resources to analyse how the request went. HTTP
has a list of status codes [15]. The HTTP response code is a
numeric value that informs the clients whether the request
has been processed successfully. For example, the value 200
means that the request was successful, 404 means the resource
was not found and 403 implies that it is forbidden to make this
request on this resource.

B. Users of Cloud Monitor

The cloud monitor can be used in a variety of ways. Namely, the
users of cloud monitor can be:

1) a cloud developer, who is implementing the cloud for
his/her organization and interested in validating his/her
implementation during the development phase with respect
to functional and security requirements.

2) a tester, who is interested in testing whether the
implementation of the cloud satisfies its design specifications
and security requirements.

3) a security expert, who wants to validate whether the
cloud implementation has any security loopholes that may give
access rights to the unauthorized users or prevent the
authorized users to access the resources.

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 215

International Conference on Recent Trends in Engineering & Technology- 2023 (ICRTET-3)

 Organised by: VSM College of Engineering, Ramachandrapuram

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Special Issue: | Apr 2023 www.irjet.net p-ISSN: 2395-0072

4) an automated testing script, which uses CM as a
test oracle and invokes the cloud implementation through
the cloud monitor to validate the authorization policy for all
the resources. The invocation results can be logged for
further fault localization.

In the next section, we present our design approach to
specifying the behavioural interfaces for the RESTful
architectures.

IV. DESIGN APPROACH

Our approach focuses on modeling APIs that are
REST compliant [35]. We use UML (Unified Modeling
Language) [38], which is well accepted both in industry and
academia, and has many associated industrial-strength
automated tools. We briefly describe the construction of
our resource and behavioral models using Cinder
component of Open Stack introduced in section II as an
example.

 Open Stack services define the permitted requests
based on the access rules introduce in their policy. json files,
which follow Role Based Access Control (RBAC) paradigm
[17]. Similarly, to the other Open Stack services, Cinder uses
Keystone service to validate the user’s credentials and
authorization requests [6].

A. Resource Model

 We use the UML class diagram [38] with the
additional design constraints to represent resources, their
properties, and the relations between each other. We use
the term resource definition to define a resource entity such
that its instances are called resources. This is analogous to
the relationship between a class and its objects in the
object-oriented paradigm.

 A collection resource definition is represented by a
class with no attributes and a normal resource definition
has one or more attributes. Each association has a name as
well as minimum and maximum cardinalities showing the
number of resources that can be part of the association.

B. Behavioural Model

 The projects are created by the cloud administrator
using Keystone and users or user groups are assigned the
roles in these projects. It defines the access rights of the
cloud users in the project. A volume can be created, if the

project has not exceeded its quota of the permitted volumes
and a user is authorized to create a volume in the project.
Similarly, a volume can be deleted, if the user of the service is
authorized to do so, and the volume is not attached to any
instance, i.e., its status is not in-use.

V. CONTRACT GENERATION

The interface of a cloud service advertises the
operations that can be invoked on it. A cloud developer finds
the cloud service API on the web and integrates it with the
other services by invoking the advertised operations and
providing it with the required parameters.

These operations may imply a certain order of
invocation or assume special conditions under which they can
be invoked. Such conditions, i.e., pre- and post-conditions of a
method, constitute contracts. This information together with
the expected effect of an operation form a part of the
behavioral interface of a service.

When the method m triggers a transition t in a state
machine, the pre-condition for the method m should be true,
i.e., the invariant of the source state of transition t and the
guard on to evaluate to true.

For example, we are interested in generating a pre-
condition to invoke the DELETE method on the volume
resource, as shown in Figure 3 (right). DELETE on volume
invokes three transitions in the behavioral model: one from
the state project with volume and full quota and two from the
state project with volume and not full quota. We should note
that while there are three different transitions triggered by
DELETE(volume), the actual implementation should combine
the behavioral of these transitions into one method.
Therefore, in order to generate the method contract, we need
to combine the information stated in all the transitions
triggered by a method into a pre-condition and post-condition
for that method, as shown in the Listing 1.

Similarly, the post-condition states that if the pre-condition
for invoking a method is true then its post-condition should
also be true. We say that the post-condition of the method m
is true if the conjunction of the state invariant of the target
state of t and the effect on the transition t is true provided its
pre- condition is true. Listing 1 shows the post-condition for
DELETE(volume) method. The implication principle
encompasses the stateful behavioral since the same method
can be fired from different states of the system and have
different results. Thus, if the method is fired with a certain

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 216

International Conference on Recent Trends in Engineering & Technology- 2023 (ICRTET-3)

Organised by: VSM College of Engineering, Ramachandrapuram

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Special Issue: | Apr 2023 www.irjet.net p-ISSN: 2395-0072

pre- condition, then the corresponding post-condition for
that method should also be established.

Since an execution of a method might change the state of
a resource, to evaluate the pre-condition, we need to store
the resource state before the method execution. To achieve
this, we save the resource state before the method execution
in the local variables of the monitor implementation. The
values of these variables are later used to calculate the post-
condition. We believe this is not computationally expensive
because we do not need to save the copy of the whole
resource(s) but only the values that constitute the guards
and invariants that are evaluated. Usually, this only
requires a few bits of storage per method. The pre- and
post-conditions generated from behavioral model and
security requirements

CONCLUSIONS

In this paper, we have presented an approach and
associated tool for monitoring security in cloud. We have
relied on the model-driven approach to design APIs that
exhibit REST interface features. The cloud monitors,
generated from the models, enable an automated contract-
based verification of correctness of functional and security
requirements, which are implemented by a private cloud
infrastructure. The proposed semi-automated approach
aimed at helping the cloud developers and security experts
to identify the security loopholes in the implementation by
relying on modeling rather than manual code inspection or
testing. It helps to spot the errors that might be exploited in
data breaches or privilege escalation attacks. Since open
source cloud frameworks usually undergo frequent changes,
the automated nature of our approach allows the
developers to relatively easily check whether functional and
security requirements have been preserved in new releases.

REFERENCES

2. Block Storage API https://developer.openstack.org/api-
ref/ block-storage/v3/. retrieved: 126.2017.

3. URL. http://curl.haxx.se/. Accessed: 20.08.2013.

4. Extensible markup language(xml).
https://www.w3.org/XML/. Accessed: 27.03.2018.

1. Amazon Web Services. https://aws.amazon.com/.
Accessed: 30.11.2017.

5. Keystone Security and Architecture Review. Online at
https://www.openstack.org/summit/ open stack-summit-
atlanta-2014/session- videos/ presentation/ key stone
security-and-architecture- review. retrieved: 06.2017.

6. No magic Magic Draw.
http://www.nomagic.com/products/magicdraw/.

7. OpenStack Block Storage Cinder.
https://wiki.openstack.org/wiki/ Cinder. Accessed:
26.03.2018.

8. OpenStack Newton - Installation Guide.
https://docs.openstack.org/ newton/install-guide-
ubuntu/overview.html. Accessed: 20.11.2017.

9. urllib2 - extensible library for opening URLs. Python
Documentation. Accessed: 18.10.2012.

10. Windows Azure. https://azure.microsoft.com. Accessed:

11. MM Alam et al. Model driven security for web services
(mds4ws). In Multitopic Conference, 2004. Proceedings of INMIC
2004. 8th International, pages 498–505. IEEE, 2004.

BIOGRAPHIES

30.11.2017.

Accessed: 27.03.2018.

M. V. Ramana is Associate Professor -
Computer Science Engineering in VSM
College of Engineering,
Ramachandrapuram

T.D. Bhavani is B.Tech.Computer
Science Engineering Student in
VSM College of Engineering,
Ramachandrapuram

D.Rajitha is B.Tech.Computer

Science Engineering Student in
VSM College of Engineering,
Ramachandrapuram

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 217

International Conference on Recent Trends in Engineering & Technology- 2023 (ICRTET-3)

Organised by: VSM College of Engineering, Ramachandrapuram

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Special Issue: | Apr 2023 www.irjet.net p-ISSN: 2395-0072

T.Prasad is Computer Science

Engineering Student in VSM
College of Engineering,
Ramachandrapuram

V.B.S.Ratna is Computer
Science Engineering Student in
VSM College of Engineering,
Ramachandrapuram

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 218

International Conference on Recent Trends in Engineering & Technology- 2023 (ICRTET-3)

Organised by: VSM College of Engineering, Ramachandrapuram

http://curl.haxx.se/
http://www.w3.org/XML/
http://www.openstack.org/summit/
http://www.nomagic.com/products/magicdraw/
http://www.nomagic.com/products/magicdraw/

